
AD-A269 921

Advanced Avionics Subsystems and Technology

Multiprocessor ECPM Software Documentation

pT1C
! ,_FCTE
,P 16 1993STEA

INDIANAPOLIS

This ýdCCUment I -as been QppOVe• d

t4) Pb zEeja' and sale; its

93-21607

Best
Avai~lable

Copy

PHASE II, Version 2.1

Advanced Avionics Subsystems & Technology (AAS&T) Program

Errbedded Coaputer Perfomnance N-asurement (ECPM)

MIL-STD-1553 Interface Definition

D

10 June 1993

prepared by:

Naval Air Warfare Center, Indianapolis
6000 E. 21st. Street

Indianapolis IN 46219-2189

June 93 FINAL (Oct 90 to Jun 93)

Embedded Computer Performance Measurement (ECPM) Advanced C-N00163-90-C-0165
Avionics Subsystems and Technology Multiprocessor ECPM
Software Documentation

Diane Kohalmi, John Newport, Chuck Roark, Diane Paul,
Dave Struble

Naval Air Warfare Center, Aircraft Division, Indpls
Indianapolis, Indiana

NONE

Naval Air Systems Command (AIR-546-TD)
Washington, DC 20361-0001 NONE

Unlimited Distribution

The report consists of software documentation for a new computer performance
measurement tool written in Ada. The tool is designed for easy portability between
computer systems. Included are a MIL-STD-1553B Interface Definition, A DoD-STD-2167
Systems Requirements Specification, and a DoD-STD-2167 Interface Requirements
Specification.

Unclassified Unclassified Unclassified

U
9-

I. INTRODUCTION 3

II. MIL-STD-1553 MESSAGE MIX 6

A. Message and Word Counts Definitions 8
B. Details of Word Formats 14
C. Bit Packing Algorithms 35
D. Word Packing Procedure Calls 38

III. CONCLUSIONS .. 39

IV. NOTES ... 39

A. Acronyms .. 39
B. Other AAS&T ECPM Documents 39
C. AAS&T Patch Panel Configuration 41

A. Messaae and Word Counts Definitions 8
B. Details of Word Formats 14
C. Bit Packing Algorithms 35
D. Word Packing Procedure Calls 38

LIST OF TABLES

TABLE I. Message Summary 7

TABLE II. Message Sheets 9

TABLE III. Word Definitions.............................. 15

TABLE IV. Constant Values 34

TABLE V. Binary, Hex, and Decimal Values For Packed
Words. .. 37

LIST OF FIGRES

1 MIL-STD-1553 Message Formats 4

2 MIL-STD-1553 Word Formats 5

2

k

I. INTRODUCTION

The Naval Air Warfare Center (nAWC), Indianaro0 is, 2¾vancW
Avionics Subsystems and Technology (AAS&T) Ccoputer's d Sofwir2

element has developed a software tool to be used in e
measurement of embedded computer system reserve r-eCqU'm .
This tool, the Embedded Computer Performance VMoasurcoient (EŽM),
is written in Ada and is designed to provide input/output and
scheduling requirements similar to those of operational software.

This document defines the details of the AAS&T ECPM software
interface for MIL-STD-1553 data transfers used for the multiprocessor
Engineering Change Proposal (ECP). This interface per"Rits corm 1niio

between the Digital Avionic System Laboratory (DASL) VAX ccrputers and
the computer under test. These communications involve transfer of
simulated sensor data to the unit under test, and transfer of navigation
solutions and performance information from the unit under test.

Military standard data conventions are assumed. For example, the
Most Significant Bit (MSB) of all digital quantities must be transmitted
first, as required by MIL-STD-1553. Also, the MSB is assumed to be the
sign bit, in accordance with MIL-STD-1750 (VAX data conventions are
consistent with this assumption).

All transactions are Bus Controller (BC) to Remote Terminal (RT)
or RT to BC, as defined in MIL-STD-1553. Each message is composed of
command, status, and data words, as specified by the MIL-STD-1553 (see
Figure 1). Figure 2 illustrates command, status, and data word forwats.
The actual transmissions are controlled by the BC, which in the case of
the ECPM is the DASL VAX. Optional NIvL-STD-1553 features, such as
dynamic bus control, mode codes, or broadcast, are not used for Lhis
interface (appropriate bits set to zero in command and status words).
RT 31 is not to be used as this is reserved for broadcast. SLmilarlv,
subaddresses 0 and 31 are not to be used since they are reserved for
mode codes.

The next section provides detailed descriptions of all message
formats and data words to be used in this interface.

3

RECEIVE DATA DATA DATA STATUS
COMMAND WRD WRD ---- WORD WORD

BC TO RT TRANSFER

TRANSMIT ... STATUS DATA DATA DATA
COMMAND WORD WORD WRoD WORD

RT TO BC TRANSFER

* RESPONSE TIME

Figure 1. MIL-STD-1553 Message Formats

AccJ io,-, For

By

Dist

4

BITS: 0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15

CGMV7M WORD: ----------- ----------- -----------
RT # Subaddress Word Cousit

(0-4) (6-10) (11-15)

CCM('VFND BIT 5: Transmit/Receive

DATA WORD (s):
(0-15)

STATUS WDRD: .------------I I I I
RT # reserved
(0-4) (8-10)

STATUS BIT 5: Message Error
STATUS BIT 6: Instrumentation
STATUS BIT 7: Service Request
STAkTUS BIT 11: Broadcast Command Received
STATUS BIT 12: Busy
STATUS BIT 13: Subsystem Flag
STATUS BIT 14: Dynamic Bus Control
STATUS BIT 15: Terminal Flag

NOTE: Each word is actually 20 bits in length, but the initial 3
synchronization bits and final parity bit have been deleted for clarity.

Figure 2. MIL-STD-1553 Word Formats.

5

I

II. MIL-STD-1553 MESSAGE MIX

Table I provides an overview of the message structures and word
counts of all messages used in this interface. The Unit Under Test
(UUT) is designated RThS. The first column indicates the message number,

which corresponds with a subaddress number. The second column indicates
the number of words sent in that message. The "T/R" coiumn indicates
whether RT5 transmits or receives the message. The update rate in Hertz
is indicated for each message. The last column gives a high level
description of the contents of the message.

6

TABLE I. MESSAGE SUM4lTRY

MESSAGE/SA WORD T/R RATE DESCRI PT IWT

OCUNT (Hz.)

1,7,14,25 5* T 20 Angular solution
3, 9,21,17 16* T 20 Translational

Solution
4,11,22,18 31* T 20 Lat./Long. 3-it.
5R 15 R 20 Sensor Inputis
5T 17 T 20 Benchmark Cormand

Echo
6 17 T 20 Results Output
7 7 R 20 Benchmark Co•rrands

2,8,20,16 2* T 20 Constant
10,12,23,29 5* T 20 Constant
15,13,24,30 11* T 20 Constant

* Word Count For Each Message.

7

A. Message and Word Counts Definitions

Table II contains a description of each word for all the messages.
The RT subaddress is programmed as the message number. Therefore,
according co the MIL-STD-1553 protocol, the message number must be
between 1 and 30. The word count must be between 1 and 32. The
"CONTENTS" column indicates the benchmark software data base variable
name for RT5 and RT7 outputs, or value of constants. RT5 and RT7
inputs must be declared in the input/output package specification.
Many of these inputs are assumed to be 32 bit precision (two sixýteen bit
words). As usual with MIL-SMD-1553 message sýructures, the most
significant word is transmitted first. The final column indicates
whether the word is a variable or a constant. Finally, message numbers
or words within a message which are zero are not presented.

All messages are outputs from the navigation benchmark except for
messages 5 and 7. Therefore, the "contents" column of Table II contains
the name of the local variable in the navigation benchmark which
contains the value of this output. These names must not be confused
with the simulation data base na.mes, many of which are identical.
Message 5 contains the sensor inputs to the navigation benchnark which
are needed to execute the update equations. Message 7 contains the
benchmark control and performance information.

The details of the word formats are provided in Table III. The
number in parentheses after the "CONTENTS" in Table II refers to the
detailed word format entry in Table III for words with variable content.

8

TABLE II. MESSAa SýHPTS

MESSAGE 'XRD CONTEN=TS TTIE

1 1 PSI (18) VARBLE

1 2 THETA (19) VARIABLE

1 3 PHI (20) ARABLE

1 4 Message 1 Status (35) VARLE

1 5 Module Identification (38) VARiABLE

2 1 45056.0 CONST;ŽJT

2 2 Module Identification (35) VA7IRLABLE

3 1 32768.0 0ON STANT

3 2 32768.0 CONSTAN

3 3 4576.0 CWNSTT1F

3 4 PSI (18) VARIiABLE

3 5 NAV VEL X (15) \'_RI_3LE

3 6 NAV VEL Y (16) WV R LABLE

3 7 NAV VEL Z (17) V RLABLE

3 8 PLATFORM X ACCELERATION (1) \ARI-IBLE

3 9 PLATFORM Y ACCELERATION (2) VARILABLE

3 10 VERTICAL ACCELERATION (3) V!ARiABLE

3 11 RATE X (7) VA-RIABLE

3 12 RATE-Y (8) VARIABLE

3 13 RATE-Z (9) VARIABLE

3 14 NAV BAROMETRIC RATE (14) VARIABLE

3 15 Message 3 Status (36) VARIABLE

3 16 Module Identification (38) VARIABLE

TABLE II. MESSAGE SHEETS (contirn,)

MESSAGE WORD CON=TS

4 1 32768 .0 ,,, ,T ,
4 2 32768.0 I'CUST'T X
4 3 49139.0 CXSSoiA,•NT
4 4 PSI (18) \VARj•L• lTp
4 5 PSI (18) AR LA3-L

4 6 THETA (19) VATRLABLE
4 7 PHI (20) ,/,RIABLE
4 8 PHI (20) VARLABIE
4 9 NAV VEL Y (16) VARIABLE
4 10 NAV VELX (15) VARIABLE
4 11 NAV VEL Z (17) VARLZBE
4 12 NAV ALTITUDE ! (23) VW RIABTLF
4 13 NAV ALTITUDE 2 (23) VARIAB•E
4 14 NAV LATITUDE DEG (21) VARIABLE
4 15 NAV LONGITUDEB DEG (22) VARIABLE
4 16 2050.0 CXNSTAIT
4 17 PLATFORM Y ACCELERATION (2) VARIABLE
4 18 PLATFORM X ACCFTERATICN (1) VARIABLE
4 19 VERTICAL ACCELERATICN (3) \VARIABLE
4 20 1.0 ONSTANT
4 21 1.0 CCNSTANA
4 22 0.0 (•Shr
4 23 0.0 M1I'STAt,
4 24 0.0 CONSTA{LT
4 25 RATE X (7) VTARIABLE
4 26 RATE Y (8) VARIABLE
4 27 RATE Z (9) VARIATBLE
4 28 20.0 CCCSTANI
4 29, 30 ressage 4 Status (37) VARIABLE
4 ,31 Module Identification (38)VARTIAB__,

I 0

TABLE II. MESSAGE SHEETS (coninued)

MESSAGE WORD OXNTENTS TYPE

5R 1 PLATFORM X ACCELERATICN 1 (4) VAPRJpJA T •,' %•

5R 2 PLATFORM X ACCELERATION 2 (4) VERIABL, ILS7•*.'

5R 3 PLATFORM Y ACCELERATIONC1 (5) VARLHV:., ...

5R 4 PLATFORM Y ACCELERATICON2 (5) V R.APAlE, LS
5R 5 VERTICAL ACCELEPATICN 1 (6) VARIASlE, MSW
5R 6 VERTICAL ACCELERATION-2 (6) VA'.IAB',ý L:Sw

5R 7 RATE X 1 (10) V;T.iLE, M&'
5R 8 RATEfX 2 (10) A-RIA•BE, T_1"

5R 9 RATE Y 1 (11) VA.RIAB1LE, 171 /
5R 10 RATEtY 2 (11) VAIAL, -T
5R 11 RATEfZi1 (12) VARLABLE, MS,-

5R 12 RATE Z 2 (12) VA.RIA'BLE, LS.7
SR 13 BAROMETRIC ALTITUDE 1 (13) VARIPABLE, MS°N

5R 14 BAROMETRIC ALTITUDE 2 (13) VARIALE, LS

CR 15 Module Identification (38) C0(\1STiT: (-i)

II

TABLE II. MESSAGE SHEETS (continued)

5T, 6 1 ECPM Control Word (24) VARIABLE
5T, 6 2 Benchmark Duration Counter (25) VARIABLE
5T, 6 3 Input/Output Max. Iterations (26) VARIABLE

Per Frame
5T,6 4 Status Word (27) VARIABLE
5T,6 5 Spare Processing TimeInteger (28) VARIABLE, MSW
5T, 6 6 Spare Processing Time, VARIABLE, LSJ

Fraction (29)
5T, 6 7 Maximum Throughput DASL Loop

Counts, Most Significant Half (31) VARIABLE
5T, 6 8 Maximum Throughput DASL Loop

Counts, Least Significant Half (31) VARIABLE
5T,6 9 Maximum Throughput Time in

Seconds, Integer Part (32) VARIABLE
5T,6 10 Maximum Throughput Time in

Seconds, Fractional Part (33) VARIABLE
5T, 6 11 Additional 10 DASL Loop Count,

Most Significant Half (34) VARI-ABLE
5T,6 12 Additional IO DASL Loop Count,

Least Significant Half (34) VARIABLE
5T, 6 13 Maximum Input/Output Count (30) VARIABLE
5T, 6 14 ECPM Mode (40) VARIABLE
5T,.6 15 Module Identification for 10 VARIABLE

Mix Slave (38)
5T,6 16 Navigation Results Output Set (39) VARIABLE
5T,6 17 Module Identification (38) VARIABLE

12

TABLE II. MESSAGE SHEETS (continued)

7 1 ECPM Control Word (24) VARIABLE
7 2 Benchmark Duration Counter (25) VARIABLE
7 3 Input/Output Max Iterations VARLIALE

Per Frame (26)
7 4 ECPM Mode (40) VARIABLE
7 5 Module Identification to receive VARIA_•BLE

Additional 10 Mix Slave (38)
7 6 Navigation Results Output Set (39) VARIABLE
7 7 Moduule Identification (selects

module which performs
calculations) (38) VARIABLE

10 1 892.0 CONSTANT
10 2 13184.0 CONSTANT
10 3 540.0 CONSTANT
10 4 37840.0 CONSTANT
10 5 Module Identification (38) VARIABLE

15 1 1.0 ODNSTANT
15 2 30.0 CONSTANT
15 3 0.0 CONSTANT
15 4 0.0 CONSTANT
15 5 0.0 OONSTANT
15 6 65397.0 CONSTANT
15 7 2214.0 GONSTANT
15 8 8160.0 CONSTANT
15 9 0.0 OONSTANT
15 10 2114.0 CONSTANT
15 ii Module Identification (38) VARIABLE

13

B. Details of Word Formats

Table III provides a detailed explanation of each word which is a
variable in the message mix. Constant values are given in Table II for
the words which are constants. Constant values in both decimal, hex,
and binary are given in Table IV.

The "SOURCE" entry indicates whether the UUT or the DASL VAX
transmits this word. Since the DASL VAX acts as the Mlission Computer
(MP), the source may be indicated as "ME". Specific source software
applications may be indicated when the source is the UUT. Several words
generated by the UUT merely echo back the sensor inputs, therefore
mux io is indicated as the procedure of origin.

The "DEST" indicates the computer which receives the word. If the
MC is the receiver and the word is used as input to the display
software, this fact is so indicated in the table entry.

The "TYPE" entry indicates whether the variable is symmetric, non-
symmetric, or discrete. In the case of non-symmetric variables, the
offset is part of the entry. This information indicates the encoding
and decoding algorithms used to convert the real variable into a 16-bit
integer. These algorithms, together with variables "OFFSET", "MAX",
"MIN", and "RESOLUTION" will be discussed in the last section of this
document.

"MwX" and "MIN" refer to the maximum and minimum values of the
MIL-STD-1553 word. The minimum is offset by the resolution ("RES")
because of the bit packing method discussed in the next section of this
document. The value of the resolution is the same as the "scaling
factor" which is also discussed in the next section.

All outputs are 16 bit (two byte) packed integers. Entries
identified as 32 bit values consist of two sixteen bit words. The most
significant word is first.

"UNITS" identifies the unit of mmeasure for the variable.

"RESOLUTION" identifies the numerical difference of adjacent bit
values of the packed word due to the algorithm used. This is also the
value of the Least Significant Bit (LSB). Calculation of this value is
discussed in the next section.

14

TABLE III. Word Definitions.

1. PLATFORM X ACCELERATION

SOURCE: UUT (NAV, mux io)
DEST: MC (VAX), used by displays
TYPE: SYMVETRIC

MAX MIN WORD UNITS RESOLUTION

SIZE

+720.0 -720.0 - RES 16 ft/sec**2 720/32767

2. PLATFORM Y ACCELERATION

SOURCE: UUT (NAV, mux io)
DEST: MC (VAX), used by displays
TYPE: SYMvETRIC

VAX MIN WORD UNITS RESOLUTION
SIZE

+720.0 -720.0 - RES 16 ft/sec**2 720/32767

3. VERTICAL ACCELERATION

SOURCE: UUT (NAV, mux io)
DEST: MC (VAX), used by displays
TYPE: SYMMETRIC

MAX MIN WORD UNITS RESOLUTION
SIZE

+720.0 -720.0 - RES 16 ft/sec**2 720/32767

15

TABLE III. Word Definitions (continued).

4. PLATFORM X ACCELERATICN 1, PLATFORM X ACCELERATION 2

SOURCE: MO (VAX acceleration sensor model)
DEST: UUT (NAV)
TYPE: SYMMETRIC, two sixteen bit words

M MIN WORD UNITS RESOLUTION

SIZE

+720.0 -720.0 - RES 32 ft/sec**2 720.0/2147483647.0

5. PLATFORM Y ACCELERATION_1, PLATFORM Y ACCELERATION 2

SOURCE: MO (VAX acceleration sensor model)
DEST: UUT (NAV)
TYPE: SYNVETRIC, two sixteen bit words

MAX MIN WORD UNITS RESOLUTION

SIZE

+720.0 -720.0 - RES 32 ft/sec**2 720.0/2147483647.0

6. VERTICAL ACCELERATION_1, VERTICALACCELERATION2

SOURCE: MO (VAX acceleration sensor model)
DEST: UUT (NAV)
TYPE: SYN1M'ETRIC, two sixteen bit words

M MIN WORD UNITS RESOLUTION
SIZE

+720.0 -720.0 - RES 32 ft/sec**2 720.0/2147483647.0

16

TABLE III. Word Definitions (continued).

7. RATEX

SOURCE: UUT (NAY, mux io)
DEST: MC (VAX)
TYPE: SY+VETRIC

SMIN WORD UNITS RESOLUTION

SIZE

+20.0 -20.0 - RES 16 rads/sec 20/32767

8. RATE Y

SOURCE: UUT (NAV, mux io)
DEST: MC (VAX)
TYPE: SYMIETRIC

VAX MIN WORD UNITS RESOLUTION

SIZE

+20.0 -20.0 - RES 16 rads/sec 20/32767

9. RATE Z

SOURCE: UUT (NAV, mux io)
DEST: MC (VAX)
TYPE: SYN4VETRIC

NMX MIN WORD UNITS RESOLUTION
SIZE

+20.0 -20.0 - RES 16 rads/sec 20/32767

17

TABLE III. Word Definitions (continued).

10. RATE X i, RATE X 2

SOURCE: MC (VAX rate sensor model)
DEST: UUT (NAV)
TYPE: SyMETRIC, two sixteen bit words

MAX MIN WORD UNITS RESOLUTICJ

SIZE

+20.0 -20.0 - RES 32 rads/sec 20.0/2147483647.0

11. RATE Y 1, RATE Y 2

SOURCE: MC (VAX rate sensor model)
DEST: UUT (NAV)
TYPE: SYMvIETRIC, two sixteen bit words

NMX MIN WORD UNITS RESOLUTION
SIZE

+20.0 -20.0 - RES 32 rads/sec 20.0/2147483647.0

12. RATE Z 1, RATEZ 2

SOURCE: MC (VAX rate sensor model)
DEST: UUT (NAV)
TYPE: SYMMETRIC, two sixteen bit words

PAX MIN WORD UNITS RESOLUTION
SIZE

+20.0 -20.0 - RES 32 rads/sec 20.0/2147483647.0

18

TABLE III. Word Definitions (continued).

13. BAROMETRIC ALTITUDE_1, BAROMETRIC ALTITUDE 2

SOURCE: MC (VAX Air Data Computer model)
DEST: UUT (NAV)
TYPE: NONSYMtETRIC, OFFSET = 39,250, two sixteen bit words

MAX MIN WORD UNITS RESOLUTION
SIZE

+80,000.0 -1500.0 - RES 32 feet 40750.0/2147483647.0

14. NAV BAROMETRIC RATE

SOURCE: UUT (NAV, v barom)
DEST: ME (VAX)
TYPE: SYMIETRIC

MAX DTMIN WORD UNITS RESOLUTION
SIZE

+32767 -32767 - RES 16 feet/sec 1

15. NAV VEL X

SOURCE: UUT (NAV, horiz nav)
DEST: MO (VAX used by displays)
TYPE: SYMAETRIC

MAX MIN WORD UNITS RESOLUTION
SIZE

+2500.0 -2500.0 - RES 16 feet/sec 2500/32767

19

TABLE III. Word Definitions (continued).

16. NAV VEL Y

SOURCE: UUT (NAV, horiz nav)
DEST: MC (VAX used by displays)
TYPE: Sy"ETRIC

MAX MIN WORD UNITS RESOLUTION
SIZE

+2500.0 -2500.0 - RES 16 feet/sec 2500/32767

17. NAV VEL Z

SOURCE: UUT (NAV, vert nav)
DEST: ME (VAX used by displays)
TYPE: SYMVETRIC

MAX MIN WORD UNITS RESOLUTION

SIZE

+2500.0 -2500.0 - RES 16 feet/sec 2500/32767

18. PSI

SOURCE: UUT (NAVy, nav att)
DEST: MC (VAX used by displays)
TYPE: SY"ETRIC

MAX MIN WORD UNITS RESOLUTION
SIZE

+180.0 -180.0 - RES 16 degrees 180/32767

19. THETA

SOURCE: UUT (NAV, nav att)
DEST: MC (VAX used by displays)
TYPE: SYMM4ETRIC

MAX MIN WORD UNITS RESOLUTION
SIZE

+90.0 -90.0 - RES 16 degrees 90,1132767

20

TABLE III. Word Definitions (continued).

20. PHI

SOURCE: UUT (NAV, nav att)
DEST: MC (VAX used by displays)
TYPE: SYMMETRIC

MAX MIN WORD UNITS RESOLUTION
SIZE

+180.0 -180.0 - RES 16 degrees 180/32767

21. NAV LATITUDE DEG

SOURCE: UUT (NAV, nav horiz)
DEST: MC (VAX used by displays)
TYPE: SYMM4ETRIC

MRX MIN WORD UNITS RESOLUTION
SIZE

+90.0 -90.0 - RES 16 degrees 90/32767

22. NAV LCONGITUDE DEG

SOURCE: UUT (NAy, nay horiz)
DEST: MC (VAX used by displays)
TYPE: SYMVETRIC

MAX MIN WOPD UNITS RESOLUTION
SIZE

+180.0 -180.0 - RES 16 degrees 180/32767

21

TABLE III. Word Definitions (continued).

23. NAV ALTITUDE 1, NAV ALTITUDE 2

SOURCE: UUT (NAV, nay vert)
DEST: ME (VAX used by displays)
TYPE: NONSYIMETRIC, OFFSET = 39,250, two sixteen bit wcrds

MAMIN WORD UNITS RESOLUTION
SIZE

+80,000.0 -1500.0 - RES 32 feet 40750.0/2147483647.0

22

'FABLE III. Word Definitions (contIAinued).

24. ECPM Control Word (discrete word)

SOURCE: UJUT [Mevssage 6]
M 1C [Yessage 7]

DEST: YE [Message 61
UUT [Message 7]

TYPE: DISCRETE

MAX MN ýUPD UNITS RESOLUTTION
SIZE

-16 (none)

Bit 13 Bit 14 Bit 15
0 0 0 Comnand to Configure Systemr
0 0 1 Start ECPM for configuration selected
0 1i Stop navigate only mode
0 1 1 Measure Maximum 10
1 0 0 Measure Maximum Throughput
1 0 1 Transmit Benchmark Results
1 1 0 Reserved
1 1 1 Reserved

B its 12-0: Reserved, ignored by =U, error for MC

NOTfE: Set by IVE, read by UUT

23

TABLE III. Word Definitions (conti:<)

25. Benchmark Duration Counter

SOURCE: UUT [Message 6]
YE [Message 7]

DEST: ME [Mlessage 6]
UUT [Message 7]

TYPE: UNSIGNED INTEGER (0 to 65535)

Max MIN WORD UNITS RESOLUT ICON
SIZE

65535 0 16 SF=IDS

NOTE: Set by MD, read by UUT

26. Input/ Output Maximum Iterations Per Frame

SOURCE: UUT [Message 6]
ME [Message -7]

DEST: MO [Message 6]
UUT [Message 7]

TYPE: UNSIGNED INTEGER (0 to 65535)

MAX MIN WORD UNITS PESOi TICON

SIZE
65535 0 16 NICNE

NOTE: Set by MV, read by UUT;
This word is the number of iterations per 50 rmsec. minor frame

comnanded.

24

TABLE III. Word Definitions (continued).

27. Status Word

IGRUW: UUT
DEST: YE

TYPE: DISCRETE

MAX MIN WORD UNITS RESOLUTION
SIZE

16

Bit 15 : 0/1 Indicates OK/Not OK ECPM Control Word see
word 24, Table III)

Bit 14 : 0/1 Indicates Can/Cannot Run This Input/Output
Mix With The Benchmark (This is a Ti-meout)

Bit 13 : 0/1 indicates results valid/invalid due to
Stop Command during recording (see word 24,
Table III)

Bit 12 : 0/1 indicates that valid/invalid navigation
data subaddress was set (see word 39, Table
III)

Bit 11 : 0/1 indicates valid/invalid slave module
identifier (see words 24 and 38, Table III)

Bit 10 : 0/1 indicates valid/invalid ECPM mode (see
word 40, Table III)

Bit 9 : 0/1 indicates valid/invalid master module
identifier (see words 24 and 38, Table III)

Bits 0-8 : Reserved, ignored by UUT, error for MC if non-
zero

25

TABLE III. Word Definitions (continued).

28. Spare Processing Time, Integer Part

SOURCE: UUT
DEST: W

TYPE: UNSIGNED INTEGER (0 to 65535)

MAX MIN WORD UNITS PESOLUTION,
SIZE

65535 0 16 SEtIDS 1

29. Spare Processing Time, Fractional Part

SOURCE: UUT
DEST: MN

TYPE: UNSIGNED INTEGER (0 to 65535)

MAX MIN WORD UNITS RESOLUTION
SIZE

65534/65535 0 16 Seconds 1/65535

30. Maximum Input/Output Count

SOURCE: UUT
DEST: wS

TYPE: UNSIGNED INTEGER (0 to 65535)

MAX MIN WORD UNITS RESOLUTION
SIZE

65535 0 16 NONE (ITERATIONS)

26

TABLE III. Word Definitions (continued).

31. Nbximum Throughput DASL Loop Counts

SOURCE: UUT
DEST: YJC

TYPE: UNSIGNED INTEGER (0 to 2**32-1)

NM MIN WORD UNITS PESOLUTI1r
SIZE

2**32-1 0 32 NONE (I'IEATIONS)

32. Maximum Throughput Time in Seconds, Integer Part

SOURCE: UUT
DEST: WiC

TYPE: UNSIGNED INTEGER (0 to 65535)

MAX MIN WORD UNITS RESOLUTION
SIZE

65535 0 16 SEOWDS 1

33. Maximum Throughput Time in Seconds, Fractional Part

SOURCE: UUT

DEST: 14

TYPE: UNSIGNED INTEGER (0 to 65535)

MAX MIN WORD UNITS RESOLUTION
SIZE

65534/65535 0 16 Seconds 1/65535

27

TABLE III. Word Definitions (continued).

34. Additional 10 DASL Loop Count

SOURCE: UU]?
DEST: Mc

TYPE: UNSIG•ED IIT27 R (C to 2**32-1)

MAX MIN WORD UNITS RESOLUTION
SIZE

2**32-1 0 32 NONE (ITERATIONS)

35. Message 1 Status

SWPRCE: UUT
DEST: MO

TYPE: DISCRETE WORD

MAX MIN WORD UNITS RESOLUTION
SIZE

65535 0 16 NONE 1

Bit PLaning

0 Word 1 of Message 1 Truncated
1 Word 2 of Message 1 Truncated
2 Word 3 of M4essage 1 Truncated

3-15 Not Used

28

TABLE III. Word Definitions (continued).

36. Message 3 Status

SOURCE: UUT
DEST: MC

TYPE: DiSCRETE WuiRD

MAX MIN WORD UNITS RESOLUTION
SIZE

65535 0 16 NU\IE

Bit Meaning

0 Word 1 of Message 3 Truncated
1 Word 2 of Message 3 Truncated
2 Word 3 of Message 3 Truncated
3 Word 4 of Message 3 Truncated
4 Word 5 of Message 3 Truncated
5 Word 6 of Message 3 Truncated
6 Word 7 of Message 3 Truncated
7 Word 8 of Message 3 Truncated
8 Word 9 of Message 3 Truncated
9 Word 10 of Message 3 Truncated

10 Word 11 of Message 3 Truncated
11 Word 12 of Message 3 Truncated
12 Word 13 of Message 3 Truncated
13 Word 14 of Message 3 Truncated
14-15 Not Used

29

TABLE III. Word Definitions (continued).

37. Message 4 Status

SOURCE: UUT
DEST: 1M\2

TYPE: DISCRETE WORD

Mm MIN WORD UNITS RESOLUTION

SIZE

2**32-1 0 32 M]E

Bit Meaning

0 Word 1 of Message 4 Truncated
1 Word 2 of Message 4 Truncated
2 Word 3 of Message 4 Truncated
3 Word 4 of Message 4 Truncated
4 Word 5 of Message 4 Truncated
5 Word 6 of Message 4 Truncated
6 Word 7 of Message 4 Truncated
7 Word 8 of Message 4 Truncated
8 Word 9 of Message 4 Truncated
9 Word 10 of Message 4 Truncated
10 Word 11 of Message 4 Truncated
ii Word 12 of Message 4 Truncated
12 Word 13 of Message 4 Truncated
13 Word 14 of Message 4 Truncated
14 Word 15 of Message 4 Truncated
15 Word 16 of Message 4 Truncated

30

TABLE III. Word Definitions (continued).

37. Message 4 Status (continued)

16 Word 17 of Message 4 Truncated
17 Word 18 of Message 4 Truncated
18 Word 19 of Message 4 Truncated
19 Word 20 of Message 4 Truncated
20 Word 21 of Message 4 Truncated
21 Word 22 of Message 4 Truncated
22 Word 23 of Message 4 Truncated
23 Word 24 of Message 4 Truncated
24 Word 25 of Message 4 Truncated
25 Word 26 of Message 4 Truncated
26 Word 27 of Message 4 Truncated
27 Word 28 of Message 4 Truncated
28-31 Not Used

31

TABLE III. Word Definitions (continued).

38. Module Identification

SO'URCE: UUT (Messages 1,2,3,4,6,10,15)
MO (Message 7)

DEST: MO (Messages 1,2,3,4,6,10,15)
UU3 (Message 7)

TYPE: Integer

MMX MIN WORD UNITS RESOLUTION
SIZE

32767 -1 16 None 1

N=TES: [1] The value -1 indicates that the message applies to
all modules.

[2] Normal values are 0 to 32767
[3] Negative values (other than -1) are illegal
[4] Values 10, 11, 12 are typical for the TI MDP

39. Navigation Solution Output Select

SOURCE: UUT (Messages 5T, 6)
MW (Message 7)

DEST: MY (Message 5T, 6)
UUT (Message 7)

TYPE: DISCRETE

Bit 14 Bit 15 Meaning

0 0 Set 0 (outputs to subaddresses 1,2,,3,,4,,10,15)
0 1 Set 1 (outputs to subaddresses 7,8,9,11,,12,,13)
1 0 Set 2 (outputs to subaddresses

14,20, 21, 22,23, 24)
1 1 Set 3 (outputs to subaddresses

25,26, 27,28,29, 30)

Bits 0-13: Not Used

32

TABLE III. Word Definitions (continued).

40. ECPM Mode

SOURCE: UUT (Message 6)
ME (Message 7)

DEST: MC (Message 6)
UUT (Message 7)

TYPE: DISCRETE

Bit 15 Meaning

0 Navigate Only Mode
1 Record Results Mode

Bits 0-14: Not Used

33

TABLE IV. Constant Values.

MESSAGE/WORD VALUE (DEC) VALUE (BINARY) VALUE (EY.EX)

MSB LSB
2/1 45056 * [-204801 1 011 000 000 000 000 BOCO

3/1 32768 * [-32768] 1 000 000 000 000 000 8000
3/2 32768 * [-32768] 1 000 000 000 000 000 8000
3/3 4576 0 001 000 111 100 000 l1E0

4/1 32768 * [-32768] 1 000 000 000 000 000 8000
4/2 32768 * [-32768] 1 000 000 000 000 000 8000
4/3 49139 * [-16397] 1 011 111 111 110 011 BFF3
4/16 2050 0 000 100 000 000 010 0802
4/20 1 0 000 000 000 000 001 0001
4/21 1 0 000 000 000 000 001 0001
4/22 0 0 000 000 000 000 000 0000
4/23 0 0 000 000 000 000 000 0000
4/24 0 0 000 000 000 000 000 0000
4/28 20 (LEVER ARM) 0 000 000 000 010 100 0014

10/1 892 0 000 001 101 111 100 037C
10/2 13184 0 011 001 110 000 000 3380
10/3 540 0 000 001 000 011 100 021C
10/4 37840 *[-27696] 1 001 001 111 010 000 93D0

15/1 1 0 000 000 000 000 001 0001
15/2 30 0 000 000 000 011 110 001E
15/3 0 0 000 000 000 000 000 0000
15/4 0 0 000 000 000 000 000 0000
15/5 0 0 000 000 000 000 000 0000
15/6 65397 * [-139] 1 111 I11 101 110 101 FF75
15/7 2214 0 000 100 010 110 010 08A6
15/8 8160 0 001 111 111 100 000 1FEO
15/9 0 0 000 000 000 000 000 0000
15/10 2114 0 000 100 001 000 010 0842

* MIL-STD-1750 does not provide an unsigned integer word format. The
values in brackets are equivalent MIL-STD-1750 values for the defined
bit settings.

34

C. Bit Packing Algorithms

Two types of packing algorithms are reqired to generate the
entries of Table III. The first type is "Symnetric", which is defined
as the case when the entry for "MAX" is equal to the absolute value of
"MIN" (\MX = I MIN I - RESOLUTION). The second type is
"Nonsymmetric",which is defined as the case when "MAX" is not equal to
the absolute value of "MIN". Each type of algorithm is needed for 16-
bit words (single precision) and for 32-bit words (double precision).

The single precision symmetric case assumes that bit 0 (leftmost)
is the sign bit and that bit 15 (rightmost) is LSB. This gives a range
to the resulting packed integer (1553 word) of -32768 to +32767. For
the sixteen bit signed integer format, the bit pattern "1 000 000 000"
is defined as -32768. Other examples are shown in Table V.

This permits the resulting real number to be unpacked easily with
a scaling factor:

[I] real := scaling_factor * FLOAT(1553_word)

where

real -> 4 byte real variable,
scaling factor -> four byte real, value - X/32767.0,
1553 word -> decoded two byte integer input,

+32767 > value > -32768.

In a similar fashion, a symmetric, single precision real

variable can be packed into an integer output (1553 word):

[2] 1553_word := real/scalingfactor.

The double precision symmetric case is very similar, except that
the scaling factor is 31 bits. The two sixteen bit words are unpacked
into a 32 bit real variable as below:

35

[3] real := scalingfactor * (65536.0 * word_1 + word_2);

wt .Ire:

real -> four byte real variable,
scaling factor -> scaling factor, MAX/(2**31 -I),
word 1 -> most significant word (transmitted first on the

IffL-STD-1553 bus), two byte integer,
word 2 -> least significant word (transmitted second on the

MIL-STD-1553 bus), two byte integer.

The inverse of the double precision representations can be

comrputed as follows.

[4] scaledreal = real/scalingfactor

ms word = INTEGER (scaled real/65536.0),
is-word = INTEGER (scaled-real - FLOAT (65536 * ms word)),

where:

scaled real -> four byte real;
ms word -> two byte integer (packed value), most

significant word;
is word -> four byte integer (packed value, needed to

prevent overflow), least significant word;
INTEGER : Integer function of real (truncates, not rounds).

Two points of caution must be observed regarding this algorithm.
First, if is word is larger than or equal to 32768, then the two byte
integer MIL-STD-1553 least significant word will be equal to is word -

65536. In a similar fashion, if ms word is negative, then the value of
the output two byte integer corresponding to is word will be the same as
calculated above, except that the MIL-STD-1553 output will equal is word
+ 65535. The second point is that the function "INTEGER" must truncate,
not round. This is especially critical in the calculation of ms word.

The nonsymmetric case is also quite similar, except that a
midpoint offset is required:

[51 OFFSET :: (MAX + MIN)/2;
real := real-input - offset.

36

At this point, the shifted value (real) is a syimetric real variable and

the single precision symmetric packing algorithm can be used.

37

TABLE V. Binary, Hex, and Decirral Values For Packied .

BINARY HEX DECIDAL

0 iii iIi i11 il 1i1 EFFF scalingfactor * 32767

0 i00 000 000 000 000 4000 scalingfactor * 16384

0 001 000 000 000 000 2000 scaling-factor * 4096

0 000 000 000 000 001 0001 scalingfactor * I

0 000 000 000 000 000 0000 0.0

1 1il ill ii i11 ill FFFF scaling-factor * -1

1 11 000 000 000 000 FOO0 scalingfactor * -4096

1 100 000 000 000 000 COO0 scalingfactor * -16384

1 000 000 000 000 001 8001 scaling_factor * -32767

1 000 000 000 000 000 8000 scalingfactor * -32768

scaling factor = Scaling Factor

38

D. Word Packing Procedure Calls

Procedures will be needed to pack and unpack the 16-bit integers
from the MIL-STD-1553 interface into benchmark software data base
variables and VAX variables. It is assumed that the cLiver routine
automatically transmits the word to the RT output device, with no
further intervention from the application. This transmission may
involve a backplane bus transaction. The MIL-STD-1553 interface
scheduling is controlled by the bus controller (VAX). In a similar
fashion, the application is assumed to receive the most recent input
value. Therefore, bit packing and unpacking routines may be machine
dependent since some machines potentially use the LSB for the sign bit.
However, the interfaces must be standardized to assure code portability.

The calling procedure for the single precision routines is as
follows:

UNPACK (local-real , 1553 word , scalingfactor, offset) ;

PACK (localreal, 1553_word , scalingfactor, offset);

local real => benchmark software variable,
1553 word => MIL-STD-1553 16-bit integer output,
scalingfactor, offset [see section D., these are real numbers].

The offset for a syrmretric variable will be 0.0.

A symmetric variable can also be easily encoded or decoded in the
application by dividing or multiplying by the scaling factor. However,
MIL-STD-1750 bit conventions must be observed (MSB is sign bit).

39

III. aNcwS IONS

This paper has presented the data conventions, message formats,
and word formats for the AAS&T ECPM for multiprocessors.

V. NOIES

A. ACRMYMS

AAS&T Advanced Avionics Subsystems & Technology

DASL Digital Avionic System Laboratory

EýPM Embedded Conputer Performance Measurement

ECP Engineering Change Proposal

LSB Least Significant Bit

LSW Least Significant Word

'SB Mobst Significant Bit

KN Mobst Significant Word

MW Naval Air Warfare Center

Rr Remote Terminal

scalingfactor Scaling Factor

TI Texas Instruments

UýM Unit Under Test

B. OTHER AAS&T ECPM FX)UMENTS

Further information on the ECPM benchmark code can be found in
other documents produced as part of the Phase I effort. A complete
listing of such documents is provided below.

- Software Requirements Specification for the AAS&T ECPM CSCI
- Interface Requirements Specification for the AAS&T ECPM

40

- AAS&T ECPM MIL-STD-1553 Interface Definition (this document)
- AAS&T ECPM Ada Source Code Listing
- AAS&T ECPM MIL-STD-1750A Assembly Language Code Listing
- AAS&T Real-Tirre Simulation Overview, NAC Technical Report 2458

41

C. AAS&T PATCH PANEL CONFIGURATION

The MIL-STD-1553 hardware connection in DASL to the simulation
conputers is accomrplished with two patch panels. One patch panel is
located in the computer room and the second is near the cockpit. Refer
to the Software User's Manual for cable connections.

42

SOFTWARE REQUIREMENTS SPECIFICATION

FOR THE

ADVANCED AVIONICS TECHNOLOGY DEMONSTRATION (AATD) CSCI

OF

AATD SYSTEM

09/19/90

PREPARED BY:

SOFTWAP,E TECHNOLOGY DEPARTMENT
DEFENSE SYSTEMS & ELECTRONICS GROUP

TEXAS INSTRUMENTS INCORPORATED
6550 CHASE OAKS DRIVE

FLA]C, TEXAS 75099

PREPARED BY: 6n4 , •
CHUCK ROAPY!
ATD SYSTEMS ENGINEER

APPROVED BY:~
PiC• OZMEN4?-
SOFTWARE QUALITY ASSURANCE

APPROVED BY:~
DAVE STRUBLC
AATD PROGRAM MANAGER

TABLE of Contents

TABLE of CONTENTS

Paragraph Title Page

1. SCOPE 1

1.1 IDENTIFICATION 1
1.2 CSCI Overview 1
1.3 DOCUMENT OVERVIEW 1

2. REFERENCED DOCUMENTS 3

2.1 GOVERNMENT DOCUMENTS 3
2.2 NON-GOVERNMENT DOCUMENTS 3

3. ENGINEERING REQUIREMENTS 4

3.1 CSCI EXTERNAL INTERFACE REQUIREMENTS 4
3.1.1 External Interface Diagrams 4
3.1.2 AATD/ECPM I/F - AATD.IRS.ECPM . -.......... 6
3.1.3 TI Messaging I/F - AATD.IRS.MSG 6
3.1.4 Timer I/F - AATD.IRS.TIM 6
3.2 CSCI CAPABILITY REQUIREMENTS 6
3.2.1 Control AATD Capability - AATD.SRS.CTL 9
3.2.1.1 Seq Control AATD - AATD.SRS.CTL.01 il
3.2.1.2 Init AATD - AATD.SRS.CTL.02 15
3.2.1.3 Control Timer - AATD.SRS.CTL.03 16
3.2.2 Execute Nay Capability - AATD.SRS.NAV 16
3.2.3 Execute I/O Capability - AATD.SRS.I/O 17
3.2.4 Measure Spare Capability - AATD.SRS.MSP 18
3.2.5 Determine Results Capability - AATD.SRS.RES . . 19
3.2.6 Interface To OS Services - AATD.SRS.OS 20
3.2.7 Measure Total 10 - AATD.SRS.TOTIO 21
3.3 CSCI INTERNAL INTERFACES 21
3.4 CSCI DATA ELEMENT REQUIREMENTS 24
3.5 ADAPTATION REQUIREMENTS 27
3.5.1 Installation-Dependent Data 27
3.5.2 Operational Parameters 27
3.6 SIZING AND TIMING REQUIREMENTS 27
3.7 SAFETY REQUIREMENTS 27
3.8 SECURITY REQUIREMENTS 27
3.9 DESIGN CONSTRAINTS 28
3.10 SOFTWARE QUALITY FACTORS 28

ii

LIST of FIGURES

Figure Title Page

3-1 AATD CSCI Context Diagram 5
3-2 CSCI Capabilities DFD 8
3-3 Control AATD Capability DFD. 10
3-4 Seq Control AATD Subcapability STD 12
3-5 CSCI Internal Interface Diagram 22

iv

APPENDIXES

Paragraph Title Page

APPENDIX I AATD Benchmark Source 39

APPENDIX II AATD Benchmark Spare Processing Mix 40

APPENDIX III AATD Benchmark I/O Mix 41

vi

SCOPE AATD SW CSCI SRS
September 19, 1990

1. SCOPE

1.1 IDENTIFICATION

This Software Requirements Specification (SRS) establishes the
requirements for the Computer Software Configuration Item (CSCI)
identified as the Advanced Avionics Technology Demonstration (AATD),
CSCI#I, of the AATD program under the terms of Contract Number
N00163-09-C-0165 and in accordance with the AATD Statement of Work
(SOW).

1.2 CSCI Overview

The AATD Program objective is to measure embedded computer system
reserve requirements. It also has an objective of being able to
compare different embedded computers with regards to processing and
input/output (I/O) throughput. The Naval Avionics Center (NAC) has
developed a VAX-hosted navigation benchmark. TI is to port this
benchmark to its 1750A-based Mission Data Processor (MP) and
demonstrate the benchmark at NAC. TI is also to enhance the benchmark
by adding a mechanism to measure reserve I/O and reserve processor
throughput. A goal of the enhanced benchmark is that it be "easily"
portable to other vendor computers. The benchmark will be controlled
by NAC software hosted on their Digital Avionic System Laboratory
(DASL) VAX computers. This software will interface to the TI MDP via a
1553B interface. The application level software protocol is described
in the accompanying AATD Interface Requirements Specification (IRS).

This CSCI consists of the NAC navigation bnchmark ported to the
TI MDP, together with enhancements to measure spare I/O and spare
processor throughput.

1.3 DOCUMENT OVERVIEW

This SRS documents the requirements for programming design,
adaptation, quality factors, and traceability of the AATD Software
CSCI. This SRS specifies the requirements allocated to the AATD
Software CSCI and enables AATD Systems Engineering to assess whether or
not the completed CSCI complies with those requirements. Upon AATD
Systems Engineering approval and authentication, this SRS becomes the
allocated baseline for the AATD Software CSCI. This SRS is used by the
AATD software development staff as the basis for development and formal

SOFTWARE REQUIREMENTS -1- AATD
SPECIFICATION

,.2 6u•U UUUMENT6 AATD SW CSCI SRS
September 19, 1990

2. REFERENCED DOCUMENTS

The following documents, of the exact issue shown, form a part of this
specification to the extent specified herein.

2.1 GOVERNMENT DOCUMENTS

DOD-STD-2167A Defense System Software Development -
29 February 1988

MIL-STD-1815A Ada Programming Language -
17 February 1983

AATD SOW Statement of Work for Embedded Computer
Performance Measurement -
26 February 1990

AATD ECPM AATD Program Embedded Computer Performance
Measurement (ECPM) MIL-STD-1553 Interface
Definition -

15 Aug 1990

2.2 NON-GOVERNMENT DOCUMENTS

SP15-25 TI Software Engineering Standards -

19 November 1989

AATD SQPP V1.0 TI AATD Software Quality Assurance Plan

AATD IRS TI AATD Interface Requirements Specification

AATD DN TI AATD Design Note: Benchmark Measurement -
7 August 1990

SOFTWARE REQUIREMENTS -3- AATD
SPECIFICATION

ENGINEERING REQUIREMENTS AATD SW CSCI SRS
September 19, 1990

Msg._Cmnd Benchmsfrk_Out~

Momogs AAg-estn- Benchmark _Input i ECPM [

T•m w Ststus

Figure 3-1 AATD CSCI Context Diagram

SOFTWARE REQUIREMENTS -5- AATD
SPECIFICATION

, • ±m±r• u±•rm~ro AATD SW CSCI SRS
September 19, 1990

* Calculating (Benchmark Pesults) - The AATD CSCI is not

executing the navigation benchmark but is in the process of
calculating the benchmarK results.

The AATD CSCI capabilities map into the AATD CSCI modes as shown in
Table I.

Table I AATD CSCI Capabilities vs. CSCI Modes

Mode

--- I
Capability I Init I Idle I Execution I Calculating I Nay Only

----------- I--------- ------- I-------------I --------------- I-----------
Control x I x I x x
AATD I I

I---------------I--------I-------I-------------I----------------------------
Execute x x
Nay

------- I--------I-------I------ ------- I---- ------------- ----------
Execute x
1/0

----------- I--------I-------I-------------I---------------I-----------
Measure x
Spare
- -------------- I--- -------------- ------ I----- ------------ I-----------I
Determine x
Results

The AATD CSCI executes entirely within the 1750A processing
module(s) contained in the TI Mission Display Processor (MDP).

The following paragraphs define the capability requirements of the
AATD CSCI.

SOFTWARE REQUIREMENTS -7- AATD
SPECIFICATION

ENGINEERING REQUIREMENTS AATD SW CSCI SRS
ptember 19, 1990

3.2.1 Control AATD Ca ability'- AATD.SRS.CTL

The purpose of the Control AATD capability is to control the
sequencing of execution of the benchmark. In particular, this
capability is responsible for initializing the AATD CSCI, interfacing
with the ECPM for invocation of the benchmark and returning results,
causing the Determine Results capability to execute upon completion of
the Execute Nay capability, and awaiting reinvocation of the benchmark
while idle. Figure 3-3 shows the DFD for the Control AATD capability.
The following subparagraphs define the requirements for the Control
AATD capability.

SOFTWARE REQUIREMENTS AATD
SPECIFICATION

September 19, 199(,

3.2.1.1 Seq Control AATD - AATD.SRS.CTL.01

The purpose of the Seq Control AATD subcapability is to control
execution of the benchmark. The State Transition Diagram for Seq
Control AATD is shown in Figure 3-4.

SOFTWARE REQUIREMENTS -11- AATD
SPECIFICATION

•,• x•, •ux~~oAATV SW CSC! SRS

September 19, 1990

The requirements for Sequence Control AATD are:

* (AATD.SRS.CTL.01-1] Sequence Control AATD shall place itself in
the initialization mode and invoke the Init AATD capability.

* [AATD.SRS.CTL.01-2] Upon completion of Init AATD (as signified
by Init Complete), Sequence Control AATD shall place itself in
the idle mode and await benchmark commands from the ECPM.

[AATD.SRS.CTL.01-3] While in the idle mode, upon reception of a
Nay Only benchmark command, Sequence Control AATD shall place
itself in the Nay Only mode and invoke Execute Nay (via
NayStart).

(AATD.SRS.CTL.01-41 While in the idle mode, upon reception of a
Benchmark benchmark command, Sequence Control AATD shall place
itself in the Execution mode and set up the benchmark timeout
by invoking Control Timer (via Start Timer). Upon completion
of the benchmark timer setup (as signified by TimerStarted),
Sequence Control AATD shall invoke Execute Nav (via Nay_Start),
Execute 10 (via IOStart), and Measure Spare (via SpareStart).

(AATD.SRS.CTL.01-53 While in the idle mode, upon reception of a

Stop benchmark command, Sequence Control AATD sha-, remain in
the idle mode and ignore the command.

[AATD.SRS.CTL.01-6] While in the idle mode, upon reception of a
Measure 10 benchmark command, Sequence Control AATD shall start
the measurement of total I/O by invoking the Measure Total 10
capability (via MeasurelOStart) . Upon completion of the
measurement of total I/O (as signified via MeasureIO Complete),
Sequence Control AATD shall return to the idle mode.

[AATD.SRS.CTL.01-7] While in the Nay Only mode, upon reception

of a Stop benchmark command, Sequence Control AATD shall halt
the execution of Execute Nay (via Nav Stop) and return to the
idle mode, awaiting a benchmark command.

(AATD.SRS.CTL.01-8] While in the Execution mode, upon reception
of the benchmark timeout (as indicated via Timeout), Sequence
Control AATD shall halt tl'e execution of Execute Nay (via
NayStop), Execute 10 (via IOStop), and Measure Spare (via
Spare_Stop), invoke Determine Result3 (via DetermineResults),
and enter the Calculating mode.

[AATD.SRS.CTL.01-91 While in the Execution mode, upon reception
of an error indication (via Nay Error) from Execute Nay,
Sequence Control AATD shall halt the execution cf Execute Nay
(via Nay_Stop), Execute 10 (via 10_Stop), and Measure Spare
(via SpareStop), signal the occurrence of the error (via
BenchError) to the ECPM, and return to the idle mode, awaiting

SOFTWARE REQUIREMENTS -13- AATD
SPECIFICATION

September 19, 1990

Table II Control AATD Inputs/Outputs

NAME I/0 DESCRIPTION

Nav Error IN Navigation error indication
Bench Cmd IN Benchmark command
MeasureIO_Complete IN Signal indicating Total I/O

has been measured
ResultsComplete IN Signal indicating results have

been calculated and transferred
Timeout IN Benchmark timeout indication
TimerStarted IN Signal signifying Benchmark timeout

setup
InitComplete IN Initialization complete indication
Start-Init OUT Signal for Init AATD to begin

execution
MeasurelO Start OUT Signal to start measuring Total 1/0
Spare_Start OUT Command for Measure Spare

to begin executing its
spare execution loop

Spare_Stop OUT Command for Measure Spare
to stop executing its
spare execution loop

NayStart OUT Signal for Execute Nay
to begin executing navigation
algorithm

NayStop OUT Command for Execute Nay to
stop executing navigation
algorithm

Bench Error OUT Benchmark error indication
StartTimer OUT Signal to setup benchmark timer
IOStart OUT Signal for Execute I/O to

begin executing I/O mix
IOStop OUT Command for Execute I/O to

stop executing I/O mix

Determine Results OUT Command for Determine Results
to calculate Measure Spare
execution time

3.2.1.2 Init AATD - AATD.SRS.CTL.02
The purpose of the AATD subcapability is to initialize the AATD

CSCI.

The requirements for Init AATD are:

* (AATD.SRS.CTL.02-1] Init AATD shall initialize the AATD CSCI.

SOFTWARE REQUIREMENTS -15- AATD
SPECIFICATION

September 19, 1990

The inputs and outputs for Execute Nay are shown in Table V.

Table V Execute Nay Inputs/Outputs

NAME I/O DESCRIPTION

NayStart IN Signal for Execute Nay
to begin executing navigation
algorithm

NavInput IN Navigation algorithm input
NayStop IN Command for Execute Nay to

stop executing navigation
algorithm

Nay_Output OUT Navigation algorithm output
NayError OUT Nay error indication

3.2.3 Execute I/O Capability - AATD.SRS.I/O

The purpose of the Execute I/O capability is to execute the I/O

mix specified for the current benchmark execution.

The requirements for Execute I/O are:

* [AATD.SRS.I/O-lJ Execute I/O shall cause the requested I/O mix
to execute during (Benchmark) Execution mode. Refer to
Appendix III for a description of the base I/O mix.

The inputs and outputs for Execute I/O are shown in Table VI.

SOFTWARE REQUIREMENTS -17- AATD
SPECIFICATION

N•±tj±IN I K UIk<ZriJ r-4i AATD SW CSCI SRS
September 19, 1990

Table VII Measure Spare Inputs/Outputs

NAME I/O DESCRIPTION

SpareStart IN Command for Measure Spare
to begin executing its
spare execution loop

Spare_Stop IN Command for Measure Spare
to stop executing its
spare execution loop

<Updated>LoopsExecuted OUT Number of loops executed in
Measure Spare

3.2.5 Determine Results Capability - AATD.SRS.RES

The purpose of the Determine Results capability is to determine
the spare processing results for the benchmark executed with the given
I/O mix.

The requirements for Determine Results are:

[AATD.SRS.RES-1] Determine Results shall determine the
processing time that Measure Spare executed during the
execution of the benchmark based on the information stored in
Loops-Executed by Measure Spare.

* %IAATD.SRS.RES-2) Determine Results shall initiate a transfer to
ECPM of the calculated time that Measure Spare Executed.

The inputs and outputs for Determine Results are shown in
Table VIII.

SOFTWARE REQUIREMENTS -19- AATD
SPECIFICATION

September 19, 1090

Table IX Determine Results Inputs/Outputs

NAME I/O DESCRIPTION

TimerStatus IN Timer related status
MsgResults IN Results from a message command
MsgCmd OUT Message command
TimerCmd OUT Command to invoke timer function

3.2.7 Measure Total 10 - AATD.SRS.TOTIO

The purpose of the Measure Total 10 capability is to measure the
total I/O available for the computer system under test.

The requirements for Measure Total 10 are:

S(AATD.SRS.TOTIO-11 Measure Total 10 shall measure the total 10

available for the system under test. The results shall be
returned in terms of the base I/O mix. Refer to Appendix III
for a description of the base I/O mix.

The inputs and outputs for Measure Total 10 are shown in Table X.

Table X Measure Total 10 Inputs/Outputs

NAME I/O DESCRIPTION

MeasureIOStart IN Signal to start measuring Total I/O
MeasureIO-Complete OUT Signal indicating Total I/O

measured

Total IO OUT Total I/O available for system
under test

3.3 CSCI INTERNAL INTERFACES

The AATD CSCI is shown with its logical internal interfaces in

Figure 3-5. These logical interfaces are identified and described
below. Detailed information concerning the data elements transmitted
across each interface is contained in paragraph 3.4 CSCI Data Element
Requirements.

SOFTWARE REQUIREMENTS -21- AATD
SPECIFICATION

ENGINEERING REQUIREMENTS AATD SW CSCI SRS
September 19, 1990

Control AATD/Execute Nay interface (IF CTL NAV). This interface

is used to pass control commands between Control AATD and
Execute Nay. The summary information transmitted over this
interface consists of the following:

Data Element Source Destination

Nay Start CTLO1 NAV02
Nav Stop CTLO1 NAV02
NayError NAV02 CTLO1

* Control AATD/Execute 10 interface (IF CTL 10). This interface

is used to pass control commands between Control AATD and
Execute 10. The summary information transmitted over this
interface consists of the following:

Data Element Source Destination

10 Start CTL01 1003
IOStop CTLO1 1003

Control AATD/Measure Spare interface (IFCTLMSP). This

interface is used to pass control commands between Control AATD
and Execute Nay. The summary information transmitted over this
interface consists of the following:

Data Element Source Destination

SpareStart CTLO1 MSP04
Spare_Stop CTL01 MSP04

Control AATD/Determine Results interface (IF CTL RES). This

interface is used to pass control commands between Control AATD
and Determine Results. The summary information transmitted
over this interface consists of the following:

Data Element Source & Destination

Determine Results CTLO1 RES05
Results_Complete RES05 CTL01

Control AATD/Measure Total 10 Interface (IF CTL MEASIO). This

interface is used to pass control commands between Control AATD
and Measure Total 10. The summary information transmitted over
this interface consists of the following:

SOFTWARE REQUIREMENTS -23- AATD
SPECIFICATION

September 19, 1990

Table XI AATD CSCI Data Element Requirements

+---4----------------+-------------------+---------+

I Identifier I Description I Units I Range I Res I
--- +----------------+-------------------+---------+

I Bench Cmd I Benchmark command. I N/A I NayOnly, I N/A I
ISee IRS. IIBencýhmark, I

I I I IMeasure 10,1I
I I I I StopI

4---+---------------+-------------------+---------

I Bench-Error IBenchmark error I (tbd] I(tbd] N/A I
II signal. See IRS- I I
+---+---------------+-------------------+---------+

IBenchmark~lnputllnput from ECPM to I I II
Ibencbhmark: I I II

II(Bench_-CmdlNav_-Inputi III
I I~~ 10_MixlBenchmark II

I Time]
+---+---------------+-------------------+---------+

IBenchmark_ I~utput to ECPM from II
I Output IBenchmark: I I I I

II (BenchError I Bench_ I I
I I ResultEsl Nayoutputlj I I

I TotalIC]I
+-----------+-------------------------- ---- +---------------+-------------------+---------+

IBench-Results I Results from Benchniarkl Itbd] I tbd] I [tbd] I
ISee IRS. I I I

+---+---------------+-------------------+---------+

I BenchmarkTime ITime benchmark is to I S0msec I [tbd] I (tbd] I
Ilexecute. See IRS. I I I I

4---+---------------+-------------------+---------+

I Determine ISignal for Determine I N/A I N/A I N/A I
I Results IResults to begin I III
I lExecution. I III
+---+---------------+-------------------+---------+

I LoopsExecutedlNumber of loops exec- I 32-bit 1 (2**32)-1 1 I
1luted by Measure Spare. I Integer I II

+---+---------------+-------------------+---------+

I I0 Mix 110_-Mix to execute 110 mix/secl [tbd)
Iduring : -k III
ISee Appendix III. IIII

+-----------+------------------------------+----------------4-------------------+---------

I 10_Start ISignal for Execute 10 1 N/A I N/A I N/A I
IIto begin execution. I III

+-----------+------------------------------+----------------+-------------------4---------+

I 10_Stop ISignal for Execute 10 1 N/A I N/A I N/A I
IIto stop execution. I I II

+--+----------------+-------------------+----------4-

SOFTWARE REQUIREMENTS -25- AATD
SPECIFICATION

(_6cl SRS
September 19, 1990

Table XI AATD CSCI Data Element Requirements

I Identifier I Description I Units I Range I Res I

I Timer-Started ISignal indicating I N/A I N/A I NIA I

I Itimer setup. I I I I

I Timer-Status ITimer status I N/A I N/A I N/A I

I lindication. See IRS. I I I I

I Total-IO ITotal 10 available forlIO mix/secl ftbd] I (tbdji

I Itarget. See IRS. I I I

3.5 ADAPTATION REQUIREMENTS

This paragraph specifies the requirements for adapting the CSCI to
site-unique conditions and to changes in system environments.

3.5.1 Installation-Dependent Data

None.

3.5.2 02srational Parameters

None.

3.6 SIZING AND TIMING REQUIREMENTS

The AATD CSCI has no sizing and timing requirements, except those
which can be inferred from executing the AATD demonstration. In
particular there are no reserve sizing and timing requirements.

3.7 SAFETY REQUIREMENTS

None.

3.8 SECURITY REQUIREMENTS

None.

SOFTWARE REQUIREMENTS -27- AATD
SPECIFICATION

ENGINEERING REQUIREMENTS AATD SW CSCI IRS
September 19, 1990

3.12 REQUIREMENTS TRACEABILITY

Table XII Requirements Traceability Table

-- - - - - - - - -- - - -- - - - - - - - - - - - - - - - - -- - - - - -- -- -- -- -- - -

Requirement Name I SRS Para Ref. Doc. Ref. Para
----------------------- I-------------------------I-- ---------------
AATD.SRS.CTL.01-1 13.2.1.1 SOW 3.1.4
AATD.SRS.CTL.01-2 13.2.1.1 AATD DN 1.0
AATD.SRS.CTL.01-3 13.2.1.1 SOW 3.1.4
AATD.SRS.CTL.01-4 13.2.1.1 1 AATD DN 1 2,3,4
AATD.SRS.CTL.01-5 13.2.1.1 Customer N/A
AATD.SRS.CTL.01-6 13.2.1.1 Customer N/A
AATD.SRS.CTL.01-7 13.2.1.1 Customer N/A
AATD.SRS.CTL.01-8 13.2.1.1 AATD DN 1 2.0, 3.0, 4.0
AATD.SRS.CTL.01-9 13.2.1.1 1 AATD DN 2.0, 3.0, 4.0
AATD.SRS.CTL.01-10 13.2.1.1 1 Customer N/A
AATD.SRS.CTL.01-11 13.2.1.1 AATD DN 1 2.0, 3.0, 4.0
AATD.SRS.CTL.02-l 13.2.1.2 AATD DN 1.0
AATD.SRS.CTL.03-1 13.2.1.3 1 Customer N/A
AATD.SRS.NAV-1 13.2.2 I SOW 3.1.4
AATD.SRS.NAV-2 13.2.2 AATD DN 4.0
AATD.SRS.I/O-1 13.2.3 1 AATD DN 3.0
AATD.SRS.MSP-1 13.2.4 1 AATD DN 2.0
AATD.SRS.MSP-2 13.2.4 1 AATD DN 2.0
AATD.SRS.MSP-3 13.2.4 1 AATD DN 2.0
AATD.SRS.RES-1 13.2.5 1 AATD DN 1 2.0

AATD.SRS.RES-2 13.2.5 AATD DN 1 2.0
AATD.SRS.OS-1 13.2.6 SOW 3.1.2
AATD.SRS.OS-2 13.2.6 AATD DN 2.0
AATD.SRS.TOTIO-1 13.2.7 Cust'omer N/A

SOFTWARE REQUIREMENTS -29- AATD
SPECIFICATION

September 19, 1990

4.1.1.4 Qualification Methods

The methods for validating the identified requirements are listed
in the Test Phases fields, and are defined below:

a. Demonstration (D). Demonstration is a method whereby the
performance of the software product is tested by visual
observation. Demonstration shall be used when detailed
qualitative measurement is not required, or a requirement
allocation is not meaningful below the system level.

b. Inspection (I) . Inspection of a software product shall use
physical examination of the product to verify conformance to
the requirements of the product.

c. Analysis (A). Analysis is the use of recognized techniques
to explain or illustrate the performance of the software
product. Analysis shall include the use of test drivers to
emulate input and output activities and the interpretation or
extrapolation of test data.

d. Additional Qualification Methods - None.

NOTE

For some of the test phases, the qualification
methods are marked as AID (analysis (A) or
demonstration (D)) or IID (inspection (1) or
demonstration (D)) . In such cases, the method will
be demonstration if the testing is performed on
AATD hardware and no software stubbing is
necessary. Otherwise, in such cases, the method
will be analysis or inspection, as appropriate.
The "+" operator means "and". N/A means not
applicable.

SOFTWARE REQUIREMENTS -31- AATD
SPECIFICATION

7REPARATION FOR DELIVERY AATD SW CSCI SRS
September 19, 1990

5. PREPARATION FOR DELIVERY

Reference the AATD SDP for a discussion of preparations for delivery.

SOFTWARE REQUIREMENTS -33- AAT D
SPECIFICATION

September 19, 1990

of our system, and where possible, we have decided to think logically
of where we get our data and control, and not physically. That is why
we have information coming into our system from the "OPERATOR" and
"VIDEO INTERFACE", rather than the physical hardware that we directly
interface with. We want to concentrate on what data and control our
system has to handle, and not how we physically receive that data and
control. That way iZ some piece of hardware is redesigned, our
requirements model should not have to change, if the interface remains
constant.

The next step in our modelling process is to define the major
capabilities of our system. The major capabilities are at a very high
level and will need more detail at a lower level. As we define the
major capabilities, we need to define what types of data and control
need to be passed between these capabilities. We also need to make
sure that the data and control that we defined in the context diagram
is present. If we need to add or take away any of these, we should
consider it now.

Again, this is an abstract model of our system, not a physical
design. It is possible for our physical design to change many times
without affecting the requirements. One of the main assumptions of the
philosophy that encourages us to step back from the physical is that
each process is assumed to be instantaneous, that is, as soon as each
process gets its required inputs, it produces the required outputs.
This is obviously not characteristic of any physical design.

From here, we define deeper and deeper levels in the model, we
keep checking all our inputs and outputs, and interactively work all
levels of our model until we decide that we have a "complete" set of
requirements. Throughout this process, we are careful to keep design
decisions out of our model to avoid placing unnecessary constraints on
the designer.

The following pages give a brief description of the major visual
pieces of the modelling philosophy, a sample Context Diagram, and Data
Flow Diagram (DFD).

SOFTWARE REQUIREMENTS -35- AATD
SPECIFICATION

sample Context

TERMINATOR
A

MODELEDTTEMMIN

Context Diagram

The Contaxt Diagram shows the boundery of the system being modeled. It also shows the

objects that the system Interacts with, These objects are external to the system, and are

referred to as Its environment.

The Context Diagram contains only one process, numbered '0", representing the highest level of

data flow and control flow for the system. (Note that Hatley and Plrbhal separate the date

and control context diagrams.) Inside Process 0 Is the top-level Data Flow Diagram (DFD), also

referred to as DFD 0. The diagram below shows the relationship between the Context Diagram

and DFD 0.

s A

APP'ENDIX I AATU SW CSCI SRS
September 19, 199(1

AJFTENfýIX I

AATD Benchm~ark Source

SO--FTW~kPE PE T TAFAT -1-~Tt'I

vc 000

41. CL?

> >

>1- "" A f

cc-. CI -ulo2 1

II~~ 0400 -4 *, 0-

w t:W U 4
01080, W.. 4 1 40u -j W0

41 m WIJI wJ 4c

W WIL w 0 t : -a.W
-3 U? I I- -WWU UJ 00

.. WWUJ~ UJ Uu I4 ~ ~ L I W .
I~ 0IX -- xj 3...~ -g

4-, F4> >>.- C D4 > U X w I. I s a o

N. If- I t -, >'.*uo w
0~~I L~ Z >0 >4~ >~ > >'~ >.- L , C -

c c c WZ- w C 2- 0 I0 L. 0 O1 " 0. > CC of.-. - CarP(/ 0, a6 Paw a
1, ~~ ~ ~ ~ ~ ~ ~ L - 1~.. 6-~0~ - 2 0 . , ,4 4 ~

00~ ~~~ ~~~ ~~~~~ W' MCC - u . 2 03 - . . n~ . . 2 2 2

w. 0i

ca

C61 -C d

ONL : -V -`

0 0

m >.

MO

a, N- z L) 4L
> t- 0 0- > > > c

0 m > 4Z >I
0. Ix m -

v c, 4,K

c .10 5
cp* '

S0 6) V 0C.40

0..

0~4 1- - 614

1--
4u w 46 14 w4

=.C 4t £ -

00 0 040 V 0 1 1-4-0 low. C .j.-
L0i ! -%- --0 -0 s -.-= 41.00£4

.C£ Aj b.A A I 03 .141 l U
1- MI- Z-~ 3K i 4ilz IV1 IN c I- - .u4

U.1 U.; U.; Lm CI .U 0...- AD
4týA q-,w .. c , I-Cc cc,.- 4-- '-t -'10 -E

4, ~ ~ ý 0 >I- 0

541 4 - 1-~ ~ ~~2 4 C O UX , 0

0- w 044
0. X -t

ew Is I4n0..-cl 1m

-rý.k), I ny U 140U0(ALA. CC- I T ,0 T I - mr 4c4 -CI->.
4-~ - -V - 0000 0 00C 0 c ji 0,

rn nr Kr~ cc. rnr arnrnrnrat -9 1~.4 w ,~ I" UA 0..0 .-'. LCLaaC C L a LI

= at0cc C

4, 4

400

A4,a
CF.

10

IV- 4 0
*-.c~'~. 4

~c
*m -

C* 4' C; U- 0

4E ; 1 0000
w 0 0. :.

C: w. W. 000W04..1w4.,iU. wwt

0o 40 .ol
m .* w 0 w w x 0 CDI

9" C) 0 0 0 Sl 5u 1- SI I
1- &

I t 40 11.S. 11 l` -i .l
4.) w* S 4c 5 L)w

4.~ ~~~~~ -. - -4S4.1.-i - -. - - - - - - - - - - W

U4 (A <0,Nr 0 0.............................-.
awo ,. . .. I :.ý?: ý m

n. 00.0 40 = D E4 w<K K
W144 - -~V4l M - 0. UL

4 'q 4 4 4 L., 1. . --X . 6 - 9W W jW 00i C4C w. a, a, mf0torma ma

u0

40. V, -j-
L WWj 1.11

[> 4C. W'~ i Ix .11C J -. J8 Ac

r, 1 eg -1 LI

I I Cie In- In .. a c

- ~ ~ axm 9--u .4- -

""i S.a4 - '.- 4, dw,.4 zo- Q -.

4,0 fl4 II 1- .--U u

WO0 ICW~ 4
IC. U44 6 ' O .. 4 a4 W W W Sa 1IN

44 ..1-12 .. .~ -'L0.

4 1419L W

9-.-~~C: 1- WI at -C 0-C
'

-. I -j- -

49 -C a -C W' &
-d WW . . i ~ L ~ I 4 uj a, I' .1

4A in-~ W 4A,~ a4.JJ > > i L 4 44 dC .

a4 i---u WUWC44& - 1W91 > I >I > -i at -0-

U,(4 4c t.J.. a 4 4 C Z 4 4 4 4 4 4 I- 1- W W 21

. ./ . .4 .4
of ft I SsIC~

>- 40 4 L!
I ~ ~ ~ ~ ~ ~ ~ ~ ~ a o o-~ ~ 333ZZ32222 -~1)00

N .4J.4 IC~ __ ~ - 6 > LI1
N j zw * If x-- - - - - - - - - - - -

4)CG4CI I 23

041
1- -

40.0

u LAIU --) In ai a
W P H. 4.)

som~~~~~4 V-AMinU n 1,

uj CK K C9 o U.1)

4-'~! I .
INK4

a IL4 44- 1 W

W. -9 - C uLI.a'jU1 0 - W -t

= . *A Z 41 - -

-C W -1 I2 2 2 4- I

0 >

UJW.'. -0 f C; S44 4 LU C3 C. 6-0 4c) >

2 S0.I - x .4) 44C. -C 6C 44 4 K 1.-40 - 4/4 0

IL - " 0 0 4Z11414 '
t~~~ lt -

.II-

) :1 :1':g it 6x :x tW x xC 4C

M 4 W -- 4 ----
W2W

a a .. W-' ad maw maw.. - 0 46)

U C

0. C

ie I
-W > 0

61a
I.. 1 v 0 o c

0 0 -0. c-. CD 6- w;
94b 9 41 L a L0

01 4, so It ItC
>-M -y 0' In Go L U > a l

Uim a - I41

I..A CA I..Z

N -0~1 c4 V - u
I~rl -l ,t - ,m4 0

14 1 I 0 U IV 0 C- 0- 0 00-..; i
-r CiL Ct E C a D,)j IP II> C C U3L u dl

41c .. v vn.. 4x4 *- O
4- ~ ~ ~ a 4- c' -*- . 'n .LU-.-

.- ~c 8. .- C5-C C i

CD0 C2PI

p.r.

CL

* C... -

C)C

C CD C

C) -~ .C. 0 z4 -
o op w -7

^j 4-- c.-~4
c~- 01 0 0o

- 1.4 6- . -, - o 0 0.
L . .V. 00 0LU I. C I f 0441

0~~C I,~ g g,, 44 -- i.

r-4~

> 0it4 1- a,.. 0. -
-- N. 4.. 'Ci c 0 4,4 M- ,44, 44

_t It W. CDt.aI ..- Li4,c0 -
> ' s.- C C - i. - . '> > ' -- " ~ .

0.0

0

41

aw a,
w. UZu~,-

~I I

Wv W. Ln

In11 t" II IniI III III I^ I Ll I a, V, W% l I It 0 ~ 0
61 Ir. 91 5-

2KCX = W IW M c tc i , wMM>1 LQC
o~~~ mam a-'U.

~IQ 00.0 1

=l =-i -

41
00

... K
oLx L0. 0I 6

fm2 00 coNw0 c

Cl~4 IU4 0 '

hCDl 4-4 0 u

ega..- .. -..

It C . o4- 4-9I
-2 C2)V)t) L z) a o r - CL

-4 0

NN

B1A

ww

41,~~~I 0-aI- id

UI z

It * -Cc

15 x r^ W 4 1 K K0 LOa-
Qa m.W -WW WWan D.
;b-CLU c I.-.. w0 VKw ("A -, ha; Iii00

61 ~ 1&769 N K 0 n

4c.- .E 49 IA 11 41 lAD 4c -C 4 C4 K4 9- fO

*~ I ir X~- I

*ZZ- I ~ z X: JI. ZL Xx WU M-8 AJU

- - COO IN -I- P-- -- - I- - - -b --

, ;) ; ý;0 ; ;;;;w , 00 -- 1 , -.- t U .!

I In (A_ e
e~~~i4 0e w* ~ ~

< >- -a I K - <:Ii z-.b- 1- 0

-n 0" 0 0- : V'
NIl =- - In,88 8~8

Nu
WN i ' L 0 0 *

0' 91 w 0 I!- 0'-

L" " LIJ fLu0' lO 00O

4 4~I 44c

C,
O OK IA

4z o

0.

II 0. to

-' 1.Ccw 4

0000 X0 FS1 a0

11) Wi. V)x z
-J ;:z- = I tý' - n 4r ý----- -

im r -I- ..J0K

0 .4 -C V)
'C -W -K x 'n -C

Mi UU cc. or

=> .. 4 Ci- AA 1- '
In ka 4 9

-N cl -t c f f " 0

c1 x w 2 4 '0 "0 C V w f 0 o

K~~a I~ of. c-4.) 4- 3 4
we~C x** 0u 4A- 04 ..

m ~ ~ ~ ~ ~ ~ ~ ~ ' L3. L44l- D6. 0 ' IA * O. K 0

C, (4 C4 -e v -

Q-. 0"0

8~ ~ ~ to w NN0----------

'Cl

14

- ii
0. 00

*- ^. L. CL

a "a IWOI
ry I..1 cc 1..: 0

I. - Ui M cS L. z Uz U . a,t 4. .0.000
41 U- .4 !- 0 -,1

2 > > > - =

4c 0 -1 el0m, " c m (
c 4L U 1 I >> > W -I Pý ý

0 4. co>

8z 8.O.. 4*. .. .* U..

LU)- 0U

4. li- C N' >* -4-
41 C -~

U~~L 4."uC0 CC

I, M - 1- w - N

o 0of
ww x " 0C 0 ol 0.

orawW c w4n 0- W L
0 910 z 9.1 z L4, ýl U

101 LU 1

0 IS. I-.J d0 : -

x UD

uU P- 0 0

0- n0. ri
U UO U> a. LU I- -C W

I. 4 v - A KQL
." !', n !1. t.40 C

zC 08 ~ In 0 4n .- 1- 1 V
4 LA

4K -C C n L
V5 ~ > U 0- 0 . ..J . N -..

CDw wOO n -z 0 C,' 0- m -c 45 'I 0 C0
0 L^f - LA', 2ý tfl 2

B0. 1A0 6ý0 4P L lV

C w 00 0 0 0 cc of aU W. WU UZ at9UJt I 0 wL& 0 arUx 0 0r c"t w4U a : aoAuma
9.X- 0 -I 0. c~ ' C c.. 'a- AI X -C X - I- 0 ' 00

00) cm- 00 0 400 00 V 0 0 000e.

C) X) 0' 0. X P9 4

~10

CC

o0 41 C. x-

-00 - C)
is d -C

OtR W- 0 -mo -Ko
Z)m= z-8 (00

c I I. I..:gq q ".

v 16 -1-0 0- 0-- 0-C- CI ,LW -Cudcu

3 - *- I I- 1, 000 InP
I.. * I"-o u w A

1-. 40

Iii CD C1 P-1 m. - - r
U~~A -K -C *.....

o I 9L In V)u&uw 0 *.5 0 .9 > >a > 40*~ ~~ ~ I- C, 0 0 4U * -~

V, U- J- 110 000 VS- U01 1 u ---

t-- I 4 L j4 C 9- -C 4C-E X4C 1
... 4- .4.t MU.C.w ZZ fKK Z 0. w-I.....- z 0A Ug

mi w I -

0~~~g uj CL44 44 w 0 lco~ ~

-. ~ 11 46 r- a M a. ~ -. px.r'c, "I E~4..'0> -I > .,
- ~ ~ ~ ~ C I.i IM wl m .. W 4 ~ 4~t Z 4 I

a..0 0t0 0 4 0 In 0 0 w w u

N. ~ ~ ~ ~ ~ =: a,~ C ~ ~- .. 4 I 0 Q 0

"0O' M0 -0 -0 "- "-o

cc~a CL CL CL 0.Q , Q

0U S.C

4,fl
N np wU "P1P)a

c)au.u)Qu uL

(Do D a40 Cý a OO oo C O olo
11 1. 11 I It I a 0

0I

u

4, - 4,
x0

)-'0J M-rx 0-~ Er .Eý0 0 c x>
1... lK.0 C..0 >W C 0 z - I

Q r,4. NFr*j e~ ..j 0 - -

uK .20~ - -E =
1.) , , * * , 4 CO~tN
K 999 449 9 9 0 0ILI1

U 0..0. 0.0.. 00.0. 4-44- 44-4 4-4 Il 4-

b.j

W) - u L. %o

0 !- E LA ra
H- -LJ -J W 4

ItcS L : I - r" 0"
se -w 1. 0 U, VI V 00...

rsJ 0 CC Of ODC .MFA& A p li F O

I C- C y n-r,

Fe t- 4- z

1-- -j a.0o .-
4c X - K: 0 00 0~ fl r " gz w

- 0 Uw L SI u r: ýcn 40 4AL A f." SS'
r) CK II -r OI -9 -c

w ZE - L I j C;s 65 E (S .14 .. PSV. 444

Q- V >1~fU~ af 000M A ,

L6 ws- -K:2 a.U~ tog a a -m,V 4 I. m-- -9 Sf!i wP~ -c- sc ýC)w x x C 9Ic K
4- M c. 2E w:2:

p.- >, u c

0 * 4,i0 C3. ~ w: i 0

OK a.= - 0

1 06
1ý eE- s W, 0 Z7

Lki 4[ý ff O
*.l K (A

-. ~ ~ ~ V -ý0c4j.. I
2:20 d21ZM>

u - 0IK

00I 0- - in
44. 0 c -c of

Ifs 01 ,r~' orC 0
5--AL"C 4 I 1 00 115 it w

vsý I

W C 441n L--- .15 4(-KxJ.-

00-~~00 4c0* J
in 4444 p -j 0

inw 4. . , K 0... .. w .

11~ ~ ~ :! :!- 4!,: r c > --
uS (D c5 £, ,;-

0J4 II C1 4CCK I

V, (f.44 v. 4 0 0 0 a1 . CC. .
- .su~4~-.--5-innin I 5-Il ..

0 r nW t11) Plo
rj o

.... ol .

-c 000

IM aK Or IK. cc 0: c xc -

u u Li U uu Ini 0l
4~i 4c .4 < 4- .- .- 0

Z U ++* *4* +** - - U * - ll

01 It (n - W~1

I- -~~ -e.j~ - E~t. - - -, UUU 111 f0. III n
Or or cc aLU ft1I ix3L or0 1: U cc K- 9,K C ' n - 0 4AJ. U 0

r-c !i. !I . It I f tc I n 4 40 - t 0 c) 4 -

-~~~~I v -CV LI)J~' w~ u U.,. C I IHI U. #

.- j 094 Wl5 .49 cc--- ~ 9I. -- ' 0 , . . -U

I.-.-.-~~~~~~~~... I II I I C *.C .. a~u W *

VOl 4 - -'

E~~~ EE EE EE I. S E- E, I-4,

-~~~~~c
OC MCC-

-.- ~4 0

4, I:Ii I S ~ 5 .. U

-W ~ f .- ijp +.,~ - +r. v +N~ E J

Cc,
tCv
0.

LAJ : z-a > LEmE E E EE E

7F 1- 0 I x + 4 + I

2,c I W 000 000 000,

3c m 0 4 QL' Uu u

- z ; - - .xx 2 - x' XL XE CiE

E I/l 0~ -1 W% C, 54

V~~~ I 0Z
.

0q 41 '-.
ItQ fts r.,

00 00-7
4. I 4 + II II~j*~a*- -- ' a- . w 4- - x i..tu uu u,

4AC

'10

SK 41
Q (-0. 0 0 0

of a I 0: a
L4 -C - &LJm &

cc 6 0 m
A ' - 4 =.a1

Udo

2 -~~ 4- -I . 4K I I- 6-

Si " 0D wLj w W "1

41C K.1 - _Z-4 f -'K IIL: -. c 40-40

C;1 ..-.- . 2 . -C32 - LZ I-.1 W2 6 8 -s .16 2 P- 6 W22 6.s- 0 -

rsjK P.- *--or.'-. Li ar.'~~, WD -It.(.- i *g-...- L .-- ,- lo- K: I,

4, X". X 2.0 w0*I 0 x 10- ' - X XX X0 X *l~ .0.C

0~~Z Li1U1 A Zg--g *.o oowo'cd -ooo *Iw
.... -cK~K - g. ~ K- bO - . - 3 '- L - K

4, ~~,'-wO L-m L) - - w-L Li3 .- U . L-U -a. L- a' hm L. -u 31m

4141,
44c

0 IL0

11C1

u CC)cCC i C cW c- C)0 0 CD a .0To.--

w I . 40 0 0-ý 0 - 41 F I-
-' (A 0. z. -Q + -o ýCý

4- 4- m- - 4- -E
I -K - * ICL -l-

0 LD U) U . 1

0 t I 0 It 7i L 5LU 1-
of CU) _j 4 U) _ - -t :C. x

u V) 'C 0r 3 9 w
rc C! - 44 -'-

- .. -. F) U V *4i .
I CL CA 411 0. .i G-. v V.- .- nPL 3 3

2 141C .41 K:- Cb 0' >-0 o- >* I ' 1 A

0 4A - 0 a ma E 0 w- 0,
CO.0 .0 (A Li 0ý 01 >. ~ I t4 -

Ii 0 4A ce2 ix 01 1 0 .
I C-4 4'-3~-

U.~~~t I c.) .i 41 V.'.
Im IL I. W E.C0C

U)0 0 c IA I) 0 a 4 0 f,0410 .. I~mao- 2r V. t 41 C20) " '. I ' >IU 1

41c fI C-. -'D o-4.- C.- . 4.-

6-..'a) U) 4. . 6-1. ~ I -C ' I" I- >
- W . . 41 > ~C. . 441 ~m
> 4 .. 41 .- 4t.~. I 0 4

6-. aC 4 7a f. OL Co..4

vi(A'

Li w

or.c

C. w. uCI. I
zJ I~ I I� I

OF, .0u

I z II
L n ' r (A A . . c L A v)- c

pn In ! P t - Pn VI

- r CIL G.l = - K W. 0 . C.) C . ý

0 ix 0 , or0 0 0rC

o= L . 4- I. 4- CL EJ C.. c K

UI Cat 0 .aý I-w ýa U

C 2 0 I C_ I Z

-' -a- Ca x. R -I~-'
C

Uj - - - a-. z-

Ct
1 ,LdIc

I..-

APPENDIX II AATD SW CSCI SRS
September 19, 1990

AFFENDIX II

AATD Benchmark Spare Processing Mix

SCLFTTWAY.E REQIREPMENT? -4r. AATr
SFEr TFICATICA•

APPENDIX III AATD SW CSCI SpS

September 19, 19y)

APPENDIX III

AATD Benchmark I/O Mix

SOFTWARE REQUIREMENTS -41- AATE)
SPEC IFICATION

NAC-ECPM-P1-IRS-0003 12 January 1991

INTERFACE REQUIREMENTS SPECIFICATION
FOR THE

ADVANCED AVIONICS TECHNOLOGY DEMONSTRATION
EMBEDDED COMPUTER PERFORMANCE MEASUREMENT PROGRAM

(AATD ECPM)

CONTRACT NO. N00163.09-C-0165
CDRL SEQUENCE NO. A002

PREPARED FOR:

Naval Avionics Center
Code 826

PREPARED BY:

Software Technology Department
Defense Systems & Electronics Group

Texas Instruments Incorporated
6550 Chase Oaks Drive

Piano, Texas 75086

Authenticated by: Approved by:

(Naval Avionics Center) (Texas Instruments Inc.)

Date: Date:

NAC-ECPM-PI-IRS-0003 12 January 1991

Table of Contents

1. Scope . 1

1.1. Identification . 1

1.2. System O verview 1

1.3. Document Overview .. 1

1.4. Conventions . 2

2. Applicable Documents .. 3

2.1. Government Documents .. 3

2.2. Non-Government Documents 3

3. Interface Specification .. 4

3.1. Interface Diagram s 5

3.2. AATD to ECPM Interface - AATD.[RS.ECPM 5

3.2.1. Interface Requirements .. 5

3.2.2. Data Requirements ... 6

3.3. AATD to Message Interface - AATD.IRS.MSG 6

3.3.1. Interface Requirements .. 7

3.3.1.1. INITIALIZE_1553_COMMUNICATION Procedure 8

3.3.1.2. INITIALIZE_NA.V_IO Procedure 9

3.3.1.3. WAIT_FOR_BENCHMARKCOMMAND Procedure 9

3.3.1.4. GETNAVDATA Procedure 9

3.3.1.5. WRITE_NAVDATA Procedure 9

3.3.1.6. WRITEBENCHMARKRESULTS Procedure 10

1.3.1.7. BUILDMESSAGEGROUP Procedure11

3.3.1.8. SENDMESSAGE_(GR0UP Procedure I !

3.3.1.9. INITIALZ - ADDITIONAL_10 Procedure I1

3-3.1.10. DISABLENAV_10 Procedure 12

3-3.1.11. ENABLENAV-lO Procedure 12

II

NAC-ECPM-PI-IRS-0003 12 Januar 1991

3.3.2. Data Requirements ... 12

3.4. AATD to TIMERS Interface - AATD.IRS.TIM 12

3.4.1. Interface Requirements 12

3.4.1.1. INITIALIZETIMERS Procedure 13

3.4.1.2. CLOCK Function .. 13

3.4.1.3. WAIT Procedure 14

3.4.2. Data Requirements .. 14

3.5. Machine Dependent Types Package 14

3.5.1. W ORDSIZE Constant .. 14

3.5.2. PACKED_INTEGERTYPE Type 14

3.5.3. NORMALPRIORITY Constant 14

3.6. MACHINEDEPENDENT_PROCEDURES Package 15

3.6.1. RETAINEXCLUSIVE-CPUCONTROL Procedure 15

3.6.2. RELEASE EXCLUSIVECPUCONTROL Procedure 15

3.7. NUMERIC_CONVERSION.PROCEDURES Package 15

3.7.1. PACK Procedure ... 15

3.7.2. UNPACK Procedure ... 16

3.7.3. PACKDOUBLE Procedure 16

3.7.4. UNPACK_DOUBLE Procedure 17

3.73. ROUNDTONEAREST_INTEGER Function 17

3.7.6. TRUNCATETO_0 Function18

3.8. Compiler Pragma Considerations 18

3.9. Representation Specifications for Message Types 18

3.9.1. M essage Type I 18

3.9.2. M essage Type 2 18

3.9.3. M essage Type 3 19

3.9.4. M essage Type 4 .. 19

3.9.5. Messagt Type 5 20

ili

NAC-ECPM-Pl.IRS-0003 12 January 1991

3.9.6. Message Type 6 .. 20

3.9.7. Message Type 7 ... 20

3.9.8. Message Type 10 .. 20

3.9.9. Message Type 15 ... 21

4. Quality Assurance Provisions .. 22

S. Preparations for Delivery .. 23

6. General Information ... 24

6.1. N otes . 24

6.2. MIL-STD- 1750A Configuration Information 24

6.3. Additional I1/ Task Details .. 25

6.4. Comment on 1750 to 1553B I/0 25

6.5. List of Acronym s .. 26

Appendix A. Machine Dependent Types Package for MIL-STD- I 750A A-1

Appendix B. I/O Services Package for MIL-STD-1750A B-1

List of Figures

Figure 1. AATD ECPM Execution Profile 4

Figure 2. AATD CSCI ... 5

List of Tables

Table 1. AATD.IRS.MSG Data Elements 12

Table 2. AATD.JRS.TIM Data Elements 14

Table 3. Message Mix Used in Additional I/O Task 25

Iv

NAC-ECPM-PI-IRS-0003 12 January 1991

1. Scope

1.1. Identification

This document is the Interface Requirements Specification (IRS) for the Advanced Avionics Technology
Demonstration (AATD) Embedded Computer Performance Measurement (ECPM) Software and applies to
the interface designated as AATD CSCI (Computer Software Configuration Item). This document was
prepared for the Naval Avionics Center (NAC) under Contract No. N00163-09-C-0165,

1.2. System Overview

The purpose of the ECPM software is to provide a highly portable, advanced performance measui.ment
facility for future avionic systems. Motivation for the ECPM comes from realizing that existing evaluation
methods do not support direct performance comparisons using reserve processor and 1/0 throughput. The
ECPM is the first known attempt to provide this capability.

The core of the ECPM is a six Degree-of-Freedom (6-DOF) simulation that accepts data from a MIL-STD-
1553B interface as input and provides latitude and longitude, as well as other navigational data, as output.
The nature and complexity of the ECPM is such that it cannot be delivered as a standalone product for
immediate retargeting to a new architecture. Rather, it is partitioned in a way to facilitate its movement to
novel architectures and backplanes. This generality places some additional requirements on the end user to
provide a mechanism that allows the modular components of the ECPM to communicate with the AATD
CSCI.

Hooks have been added to the ECPM to allow it to calculate reserve processor and I/O throughput in addition
to positional data. The calculation of reserve throughput data allows the performance of different processors
to be compared. To facilitate collection of this performance data, a set of calls to an underlying Network
Operating System (NOS) have been defined to allow inter-task communication. The semantics and protocol
of these supporting NOS procedures is one of the principal subjects of this document.

1.3. Document Overview

This purpose of this document is to define the interfaces between the AATD CSCI and other major
components of the ECPM. These components have been developed to allow transportability of the software
to new operating environments. The style of this document is intended to serve as much as a tutorial on how
to port the ECPM as it is to document its technical details.

This document describes the Ada specifications and supporting data structures needed to implement a set of
primitive communications procedures. These procedures are needed to implement an interface between the
ECPM software and a given avionic processor testbed. The first release of this demonstration software was
implemented for MIL-STD-1750A targets communicating via a Pi bus backplane. Input to the ECPM is in
the form of messages received over a MIL-STD-1553B interface. By convention, each message type carries
a unique numerical designation that equates to the 1553B subaddress through which the message is routed.
For example, message type 5 is always routed through subaddress 5. Output from the ECPM is delivered to
an external device via this same 1553B interface. The low-level details associated with the reading and
writing of these messages is handled by the NOS that underlies the ECPM software. To execute this program
on a given processor, the user must develop a set of Ada package bodies. These bodies implement the
semantics and protocol assumed by the NOS primitives that will implement the desired interprocessor
communications.

NAC-ECPM-Pi-IRS-000312 January 1991

This section of the IRS provides an overview of the system and of this IRS.

Section 2 of this document lists all other applicable documents.

Section 3 of this document defines the interface requirements for the AATD CSCI.

Section 4 of this document describes the quality assurance provisions and is not applicable.

Section 5 of this document describes the preparations for delivery and is not applicable.

Section 6 of this document contains general information pertaining to the requirements defined in this IRS
and a list of acronyms.

Section 7 of this document contains the appendices.

This document has been produced in the format explicitly required by Data Item Description (DID)
DI-MCCR-80026A.

1.4. Conventions

References to the "ICD" shall be interpreted as referring to the AATD ECPM MIL-STD-1553 Interface
Control Document, Reference [II of Section 2.1.

References to the "SRS" shall be interpreted as referring to the Software Requirements Specification for the
AATD CSCI, Reference [1] of Section 2.2.

References to the "IRS" shall be interpreted as referring to the Interface Requirements Specification for the
AATD ECPM. which is this document.

2

NAC-ECPM-P1-IRS-0003 12 January 1991

2. Applicable Documents

2.1. Government Documents

The following documents of the exact issue shown form a part of this specification to the extent specified
herein. In the event of conflict between the documents referenced herein and the contents of this specification,
the contents of this specification shall be considered a superseding requirement.

1. AdvancedAvionics Technology Demonstration (AATD) Program, Embedded Computer
Performance Measurement (ECPM) MIL-STD-1553 Interface Definition, Version 3.6;
10 October 1990, Naval Avionics Center, Branch 826.

2. Ada Language Reference Manual, Department of Defense, ANSI/MIL-STD-1815A-
1983; February 17, 1983.

Copies of specifications, standards, drawings, and publications required by suppliers in connection with
specified procurement functions should be obtained from the contracting agency or as directed by the
contracting officer.

2.2. Non-Government Documents

The following document of the exact issue shown forms a part of this specification to the extent specified
herein. In the event of conflict between the document referenced herein and the contents of this specification,
the contents of this specification shall be considered a superseding requirement.

Software Requirements Specification for the Advanced Avionics Technology Demon-
stration (AATD) CSCI of AATD System; 9/19/90, Software Technology Department
(STD), Defense Systems and Electronics Group (DSEG), Texas Instnunents Incorpo-
rated. This document can be obtained by contacting Software Configuration Manage-
ment, Texas Instrumentslncorporated, P.O. Box869305,MS 8435, Piano, Texas, 75086.

3

NAC-ECPM-PI-IRS-0003 12 January 1991

3. Interface Speclflcatlon

The following paragraphs describe the three principal interfaces to the AATD CSCI. Recall that the main
objective of the ECPM is to measure reserve processor and 110 throughput, although raw throughput and 1/O
bandwidth can be deduced as well. The former is accomplished by calculating the number of iterations of a
contrived (whetstone variant) instruction mix that can be executed concurrently, along with normal 6-DOF
simulation processing, in a specified period of time. The latter is accomplished by calculating the number
of iterations of the Input/Output Built-In-Test Interface Description Specification (IOBIDS) message mix
that can be executed in the same period. The state diagram describing the overall flow of control in this
process is shown in Figure 1.

® NV_•=C U U SEC •qR

Figure 1. AATD ECPM Exeution Profile.

To summarize the flow of the benchmark depicted in Figure 1, the start of a benchmark event is triggered by
receipt of a start benchmark message from the Master Computer (MC). During execution of the benchmark.
navigational data messages continue to arrive from the Master Computer at the rare of one message every 50
milliseconds or 20 Hz. For a single 20 Hz period, the ECPM will begin by iterating on the additional I/O
message mix. The number of executions of the I/O mix per 50 millisecond period is specified to the ECPM
program via a command word (reference word 26 in Table [Iii of the ICD)). For each iteration of this mix, a
counter is incremented by one. When the task controlling the additional I/O mix becomes blocked, control
will be transferred to the main portion of the benchmark responsible for the 6-DOF simulation. The
simulation processes the navigational data and generates solutions in the form of positional data.

When the additional I/O task becomes unblocked, it again receives control. [t the simulation task blocks
first, control will be sent to the additional processing task (this is the instruction mix based on the whetstone
variant) Depending on which of the two currently blocked tasks is first to become unblocked, control will
then be switched to either the additional 1/0 task or the simulation task. The interaction between these three
tasks continues until either the 20 Hz period expires, the overall benchmark event time has expired, or the
simulation task misses its timeline. A missed timeline indicates that too much overhead I/O or processing
(or both) is taking place concurrently with the simulation task. Consequently, the navigational solutions can
no longer be delivered to the Master Computer at the required rate. When this happens, the benchmark
essentially "breaks".

4

NAC-ECPM-P1-IRS-0003 12 January 1991

By driving the benchmark toward this breaking point, it is possible to quantify the reserve 1/0 and processing
capabilities of the unit under test. In the most general terms, this is the objective of the ECPM. By obtaining
hard measurements of this type, the Navy can avoid the risk associated with selecting a computer that does
not meet the performance requirements for a given program.

3.1. Interface Diagrams

The remainder of this document discusses procedures used in connection with the sending of messages
between the AATD CSCI, its three principal interfaces, the Pi bus backplane, and the MIL-STD- 1553B bus.
The format and contents of the various messages are described in detail in Reference [1) of Section 2.1.

Figure 2 shows the AATD CSCI context diagram and the external interfaces to this CSCI. The following
subparagraphs describe each external interface associated with the AATD CSCI.

"Ms+pd Sohar Itu
Message A
interface Msi_ýResult Bec Snchm-rk-Input ECPM

TimerCmd Timer_Status

Tm~out

TIMERS

Figure 2. AATD CSCI.

3.2. AATD to ECPM Interface - AATD.IRS.ECPM

The purpose of the interface between the ECPM and the AATD CSCI is to provide operator control and
ECPM control of execution of the AATD CSCI and to provide a communications path for returning
benchmark results to the ECPM. This interface contains the Benchmark-Input and Benchmark-Output data
flows shown in Figure 2. The associated data elements for this interface are documented in the AATD
Software Requirements Specification (SRS) (Reference (1], Section 2.2).

3.2.1. Interface Requlrenments

a. CSCI Synchronization - The AATD CSCI and the ECPM will execute concurrently. The ECPM
transmits sensor data to the AATD CSCI and receives navigation solutions and performance information
from the AATD CSCI at a rate of 20 Hz.

b. Communication Protocol -The ECPM will send a message to the AATD CSCI directing it to perform
one of three possible operations: NAVOnly, RecordResults, or MeasureMaxI0. The format of each
message is as described in the AATD Program ECPMMIL-STD-1553 interface Definition referenced in
Section 2.1 of this IRS.

5

NAC-ECPM-PI-IRS-0003 12 January 1991

The purpose of each of the three functional modes is as follows:

I. NA VOnly- Executes only the navigation (6-DOF simulation) portion of the benchmark.
This is the code responsible for reading navigation data messages from the Master
Computer at the 20 Hz rate and computing navigational solutions.

2. RecordResults - Executes the additional processing instruction mix (Digital Avionic
Systems Laboratory or DASL mix) in a standalone mode to calculate the total time
attributable to spare processing. This function is performed after the benchmark has
executed for some programmed duration. During execution of the benchmark, a counter
is incremented to reflect the number of times the instruction mix was executed in the
presence of navigational processing and additional I/O. At completion of the benchmark,
the additional processing mix is executed by itself, for the number of iterations just
computed, to calculate the total reserve processing time.

3. MeasureMax_10 - Executes the additional V/O (IOBIDS) message mix in standalone
mode to calculate the maximum possible reserve I/O time.

c. Priority Level -The ECPM will execute independently of the AATD CSCI. No priorities are associated

with this interface.

3.2.2. Data Requirements

The data elements for the ECPM Interface are described in Reference [1] of Section 2.1.

3.3. AATD to Message Interface - AATD.IRS.MSG

This interface contains the MsgCmd and Msg._Result data flows shown in Figure 2. The purpose of the
interface between the AATD CSCI and the Message Interface is to provide 1553B and backplane bus
communications capability between the ECPM application program and external hardware or instrumentation
(such as a VAX). The implementation of the messaging interface is target dependent. The configuration of
the system under test is assumed to contain a MIL-STD- 1553B Bus Interface Module (BIM) which connects,
along with the desired processor module of interest, to a common backplane. For example, the first prototype
of the NAC AATD software was implemented for a MIL-STD-1750A processor module and 1553B bus
interface module connected to a Pi bus backplane. These communications capabilities were provided by the
Texas Instruments (TI) Network Operating System (NOS). The NOS provides intertask and intermodule
communications capabilities based on a message passing paradigm. Only a subset of the TI NOS capabilities
were required to implement the ECPM. Equivalent functionality must be implemented by end users of the
system to utilize the program with different architectures. The requirements for the basic set of primitives
needed by the ECPM are described in the following paragraphs. In general terms, however, the end user
must supply a simple message passing scheme, a 1553B bus driver, and a driver that supports the common
backplane (e.g., VMEbus, Pi bus, etc.)

In the current version of the ECPM, there are nine message types supported. Each of these messages is
described in detail in Reference I1 of Section 2.1.

6

NAC-ECPM-PI-IRS-0003 12 January 1991

3.3.1. Interface Requirements

a. CSCI Synchronization -The Message Interface will execute synchronously in response to calls from the
AATD CSCI. Ada procedures described in the previous paragraphs implement the required messaging
semantics and comprehend the protocol of the particular backplane bus and MIL-STD- 1553B.

b. Communication Protocol - The AATD CSCI communicates with the Message Interface using the Ada
procedures described in the following paragraphs.

c. Priority Level - There is no priority associated with the Message Interface.

The nine procedures that implement the messaging interface, referred to hereafter as the IOSERVICES
package, are as follows:

"* INITIALIZE_1553_COMMUNICATION
"* INITIALIZENAV_10
"• WAITFORBENCHMARK_COMMAND
"* GETNAVDATA
"* WRITENAVDATA
"* WRITE_BENCHMARK_RESULTS
"* BUILD_MESSAGEGROUP
"* SENDv_MESSAGEGROUP
"* INITIALIZEADDITIONALIO

The functional behavior of each of these procedures is described in the following paragraphs. Users of the
ECPM must keep in mind that there is an entire message passing paradigm and a set of bus control functions
that allow the components of the ECPM to communicate. The functional software that implements the
message passing and bus control is not delivered with the ECPM. Software to support each functional area
must be written uniquely for each processor architecture to be measured. Fortunately, the code has been
packaged in a way that facilitates rapid design of these supporting components.

The ECPM consists of five Ada tasks:

I. Timer Task - Performs all timing measurements associated with the ECPM.

2. Additional I/0 Task - Generates additional message traffic to be used to quantify the
reserve I/O capacity of the processor under test. The current implementation of this task
is based on executing the message mix, defined for use in the IOBIDS, for some number
of times given as input.

3. AATD Control Task -Handles processing of control messages that govern the operation
of the AATD CSCI.

4. NAVEXEC Task - This is the root component of the ECPM that implements a 6-DOF
simulation.

7

NAC-ECPM-PI-IRS-0003 12 January 1991

5. AdditionalProcessing Task - Generates additional processing overhead by iterating on
a variation of the synthetic whetstone benchmark. This modified instruction mix is
referred to as the DASL mix.

The Timer Task is the highest priority (most urgent) task and the Additional Processing Task is the lowest
priority (least urgent) task. Refer to the Software Requirements Specification for a complete description of
the various states and control modes associated with each of these tasks.

The following paragraphs describe the parameters and functional behavior needed for each of the procedwres
required by the Message Interface. The exact format of messages referred to in the following sections are
shown in section 3.9

3.3.1.1. INITIALIZE_1553_COMMUNICATION Procedure

The INITIALIZE_1553_COMMUNICATION procedure initializes the interface to the MIL-STD-1553B
and establishes an access mechanism to the buffers through which messages will be passed between the
AATD CSCI, external devices connected to the 1553 BIM. and any other devices connected via the common
backplane. INITIALIZE_1553 COMMUNICATION must be implemented to do the following:

1. Establish a connection to the 1553B BIM that will send and receive messages to/from
an external device (for'.example, a VAX host serving as the Master Computer). The
connection process will include any activities required to verify that the BIM is
operational, that it is configured for use with the specific backplane and external device
communications characteristics, and any other one-time hardware and software setup
activities that must precede execution of the ECPM. This routine will be called exactly
once following system power-up.

2. Establish a buffer orpool of buffers through which messages will be passed. Depending
on the actual configuration of the text fixture, the BIM and target processor may be
implemented on separate modules. In this case, a buffer must be established on both the
BIM and the target processor board. INITIALIZE-1553_COMMUNICATION ar-
ranges for the allocation of a buffer at each end of the communications path. The
addresses of these buffers will be stored in variables that are local to the 10_SERVICES
package and known to the underlying implementation.

Note that one possible approach to implementing the message buffers, which is the one used by the 1750A
implementation of the ECPM, is to use the notion of a message label. Using this approach, an object called
a label is associated with some arbitrary number of buffers. The underlying routine that manages this object
arranges for a message to be allocated to the next available buffer. The caller of the routine that reads or
writes a message is freed from the responsibility for managing individual buffers and instead simply mutes
messages to/from a particular label. The code implementing the label object (actually just a queue of message
buffers) provides the functionality needed to manage the individual buffers. This approach works well for
the ECPM which associates a unique message type with a unique 1553B subaddress.

The _NITIALIZE_1553-COMMUNICATION procedure is part of the IO0SERVICES package. This
procedure has no parameters.

8

NAC-ECPM-PI-IRS-0003 12 January 1991

3.3.1.2. INITIALIZENAV_10 Procedure

The INITIALIZENAV-1O procedure is used in connection with the NAV_EXEC portion of the ECPM.
This procedure is responsible for allocating buffers to receive Type 5 messages on 1553B subaddress 5 (SA5).
Type 5 messages contain navigational data such as acceleration, altitude, etc. Recall from section 1.3 that
there is a one-to-one correspondence between 1553B subaddresser mnd message types, i.e., Type 5 messages
are always sent via SA5, Type 2 messages via SA2. etc.

The INITIALIZE_ NAV_10 procedure is part of the [0_SERVICES package. This procedure has no

parameters.

3.3.1.3. WAITFORBENCHMARKCOMMAND Procedure

The ECPM Interface Definition (Reference [1] Section 2.1) describes a set of messages, sent by the Master
Computer, used to control the behavior of the ECPM. The WAITFORBENCHMARKCOMMAND
procedure simply posts a read (with wait) to the appropriate message buffer and returns the next benchmark
command message. Note that all benchmark command messages are delivered via 1553B SA7. This
procedure basically suspends the encompassing task until a benchmark command is received.

The WAITFORBENCHMARKCOMMAND is part of the 10-SERVICES package The Ada specifica-
tion for this procedure is as follows:

procedure WAIT_-OR BENCHMARKCOMOMAND
BENCHMARKCOMMANDACCESS : out

NESSAGs-_T-YP s. BECMHARK COM AND_ACCESSTYP):

The variable BENCHMARKCOMMANDACCESS returns a pointer to a record (buffer) containing aType

7 mess.ge.

3.3.1.4. GETNAVDATA Procedure

The GET_NAVDATA procedure returns an Ada access value to the caller that points to the next logical
data message received from the MC. Navigation data messages are delivered via 1553D SA5.

This procedure suspends the encompassing task until a Type 5 message becomes available. Type 5 messages
supply navigational information such as acceleration and rate data and are described in Reference [1 of
Section 2.1.

The GETNAVDATA procedure is part of the 10-SERVICES package. The Ada specification for this
procedure is as follows:

procedure GETNAVDATA
RAN DATA ACCESS : out

MESSAGETYPES.RAW DATA ACCESSTYPE);

The variable RAWDATAACCESS returns a pointer to a record (buffer) containing a Type 5 message.

3.3.1.5. WRITENAVDATA Procedure

As navigation solutions are computed by the ECPM, the results are transmitted back to the MC via the 155 3B
bus using WRITENAVDATA. These results could consist of any message type other than Type 5, 6, or

9

NAC-ECPM-PI-IRS-0003 12 January 1991

7. The caller of this procedure will supply thc address of the message to be sent. the length of the message
in bytes. and the 1553B subaddress to which the message will be sent. The actual implementation of the
write will vary between testbeds. In the 1750A test scenario, for example, the write is implemented as a Direct

Memory Access (DMA) transferto the BIM. The transferred message is then routed from the BIM to external
instrumentation via the 155 3B.

The WRITE_NAVDATA procedure is part of the IOSERVICES package. The Ada specification for this
procedure is as follows:

procedure WRITE_NAV.DATA (
RESULTS ADDRESS in SYSTEM.address
BYTE_COUNT in positive ;
SUBADDRESS in SUBADDRESS TYPE

The variable RESULTSADDRESS is the address of the message to be transferred. The message contained
at this address will be something other than Type 5. 6, or 7. The actual memory address of the message is

obtained with Ada's ADDRESS representation attribute (as in X'ADDRESS where X is defined as any object,
program unit, label, or entry). If X is defined as the data structure containing the message to be transferred,
the RESULTS_ADDRESS parameter can be passed to this procedure by coding the parameter as:

RESULTSADDRESS -> X'ADDRESS

The ADDRESS representation attribute always returns a value of the type ADDRESS defined in the package
SYSTEM (refer to paragraph 13.7.2 in Reference (21 of Section 2.1 for more information on Ada attributes.)
This technique of assigning an object's address to a variable can be used, in general, for any parameter
declared as type SYSTEM.ADDRESS.

The variable BYTECOUNT is the number of bytes in the message to be transferred. For example, Type I
messages are 6 bytes long, Type 2 messages are 28 bytes long, etc. Consult Reference [I of Section 2.1 for

a complete description of all message types. Byte counts for each message type are defined as constants in

package MESSAGETYPES. For example, the BYTECOUNT parameter for a type 7 message could be
coded as follows:

BYTEZCOUNT => NESSAGZTYPES.IESSAGE-7.BYTZCOtUNT

The variable SUBADDRESS is the 1553B subaddress to which the message will be transferred. Note that
there is a one-to-one correspondence between 1553B subaddresses and message types, i.e., Type I messages
are always sent via SA 1, Type 2 messages via SA2, etc.

3.3.1.6. WRITEBENCHMARKRESULTS Procedure

The WRITE_BENCHMARK_RESULTS procedure operates similar to WRITENAVDATA, but only
writes messages of Type 7. These messages carry the results of the benchmark and include measurements of

spare processor and 1/0 throughput. The procedure uses low-level, NOS specific primitives to transfer
benchmark results across the common backplane to the 1553B BIM.

The WRITEBENCHMARKRESULTS procedure is part of the 10_SERVICES package. The Ada

specification for this procedure is as follows:

10

NAC-ECPM-PI-IRS-0003 12 January 1991

procedure WRITEBENCHMARXRESULTS (
BUNCJDU(RK RESULTSADDRESS in SYSTEM.address
BYTZ.CO•-T in positive) ;

The variable BENCHMARKRESULTSADDRESS is the address of the Type 7 message to be transferred.

The variable BYTECOUNT is the number of bytes in the message to be transferred. This byte count will
always be six for Type 7 messages.

3.3.1.7. BUILDMESSAGEGROUP Procedure

The BUILD_MESSAGE,_GROUP procedure is part of the IOSERVICES package and builds the Commu-
nications Control Block (CCB) chain containing the messages in the IOBIDS message mix. The exact
contents of the IOBIDS message mix, defined in Ada package AATD DATA, is known internally to the
BUILDMESSAGEGROUP procedure. At runtime, the data structure corresponding to the IOBIDS
message mix is loaded by BUILDMESSAGEGROUP. via assignments to each individual record field or
aggregate, using data supplied by the AATD_DATA package. If the message mix were to be redefined at a
later date, the contents of AATDDATA would have to be updated to reflect this.

The Ada specification for BUILDMESSAGEGROUP is as follo,.'s:

procedure BUILD MESSAGEGROUP (
MESSAGEGROUPID : in MESSAGEGROUPID TYPE) ;

The variable MESSAGEGROUP_ID is an integer identifier associated with the message mix. For Phase
One of the AATD ECPM program, there is only one message mix and the value assigned to this identifier is
superfluous. This parameter facilitates future changes to the message mix.

3.3.1.8. SENDMESSAGEGROUP Procedure

The SENDMESSAGE_GROUP procedure is part of the IOSERVICES package and transmits the message
chains built by BUILD_MESSAGEGROUP. The Ada specification for this procedure is as follows:

procedure SENDMESSAGEGROUP (
MESSAGEGROUPID : in MESSAGE_GROUP_ID_TYPE

The variable MESSAGEGROUP_ID is an integer identifier associated with the message mix. For Phase
One of the AATD ECPM program, there is only one message mix and the value assigned to this identifier is
superfluous. This parameter facilitates future changes to the message mix.

3.3.1.9. INITIALIZEADDITIONAL_10 Procedure

The INITIALIZEADDITIONALO1 procedure is part of the IOSERVICES package and establishes
communication with the NOS. Part of this process includes identifying the additional 1/O task to the
underlying NOS communications procedures and reserving buffers through which messages will be passed.
The actual mechanics of "connecting" to a NOS will be machine dependent.

The INITIALIZE ADDITIONAL_10 procedure has no parameters.

11

NAC-ECPM-P1-IRS-0003 12 January 1991

3.3.1.10. DISABLENAV JO Procedure

The DISABLENAVIO procedure is pan of the 10_SERVICES package and is used to prevent the
NAVEXEC task from receiving navigational data from the MC. The MC continuously sends input data to
the UUT, even when the UTUT is not processing the data and producing output data. Since a finite number of
buffers are reserved for input data, the result is that overflow can occur. The DISABLENAV_1O procedure
allows the NAVEXEC task to indicate that it no longer wishes to receive navigational data. The body of
this procedure is target-specific. For TI's MIL-STD-1750A implementation, the procedure consists of
sending a message to the MIL-STD- 1553B BIM indicating that data received via subaddress 5 (SA5) should
no longer be routed to the MIL-STD- I 750A module.

The DISABLENAVJO procedure has no parameters.

3.3.1.11. ENABLENAV_10 Procedure

The ENABLENAV-1O procedure is part of the IO_SERVICES package and enables the NAVEXEC task
to receive navigational data from the MC. The body of this procedure is target-specific. For TI's MIL-STD-
1750A implementation, the procedure consists of sending a message to the MIL-S',D- 1553B BIM indicating
that data received via subaddress 5 (SAS) should be routed to the MIL-STD-1750A module.

The ENABLENAV-1O procedure has no parameters.

3.3.2. Data Requirements

Table I defines the data elements for the Message Interface:

IDENTIFIER DESCRIPTION SRC DEST DATA TYPE UNITS RANGE

BENCHMARKCOMMANDACCESS Powrerio Type 7 mutiae buffe. NOS ECPM ACCESS t N/A 0.65535
BENCHMARK COMMANDTYPE.

RAWDATAACCESS Poontm to TWe s 'msage bufer ECPM NOS ACCESS to RAWOATATYPE N/A 0 .65535

RESULTS ADORESS M.sa to bet transfd (otherthen ECPM NOS SYSTEMADORESS N/A 0_65535
types 5,16. &Wd 7 .

BYTECOUNT Nuvtofbyo tobater. ECPM NOS POSITIVE Bytes 1.65535

SU8ADORESS 1%63 suddrest-.• which rcmmam * NOS ECPM SUS•ADRESS-YPE N/A 17, 10.
tnwtered. 15

BENCHMARKRESULTS _ADOAES Adrei ci Trye 7 'uemm9 to trafe, ECPM NOS SYSTFMAOORESS N/A 0. 65535

Table 1. AATD.IRS.MSG Data Elemerts.

3.4. AATO to TIMERS Interface- AATD.IRS.TIM

3.4.1. Interface Requirements

a. CSCI Synchronization - The Timer Interface is called synchronously from the AATD CSCI.

12

NAC-ECPM-PI-IRS-0003 12 January 1991

b. Communication Protocol - Communication with the Timer Interface is achieved with Ada procedure
calls documented in the following paragraphs.

c. Priority Level - There is no priority level associated with the Timer Interface.

The AATD.IRS.TIM interface contains the Timermd, TimerStatus, and Timeout data flows shown in
Figure 2. The purpose of the interface between the TIMERS and the AATD CSCI is to provide a mechanism
for retrieving the time-of-day and for forcing delays. The Phase One implementation of the ECPM uses Ada
package CALENDAR to implement this functionality. However, not all implementations of package
CALENDAR provide the same degree of timer granularity. If the particular runtime implementation of
package CALENDAR being used to implement a new version of the ECPM does not provide the desired
resolution, the user may need to implement bodies in assembly language (or using package MA-
CHINECODE) to achieve equivalent timing capabilities.
The following paragraphs describe the parameters and functional behavior required for each of the procedures

required by the TIMERS interface.

3.4.1.1. INITIALIZETIMERS Procedure

The INITIALIZETIMERS procedure will be called once following power-up. The purpose of this routine
is to provide any setup or initial configuration required for the particular hardware timer to be used. For
example, many timer devices, such as the Intel 8254, have several functional modes. An appropriate mode
must be selected that implements the desired timer functionality. When taking this approach to implementing
a timer, care must be taken to insure that reprogramming of the timer will not conflict with assumptions made
by the Ada runtime to implement its tasking semantics.

The INITIALIZE_TIMERS procedure is part of the TIMER package. This procedure has no parameters.

3.4.1.2. CLOCK Function

The CLOCK function, defined in Ada package CALENDAR, returns a single value of type CALEN-
DAR.DAYDURATION. The Ada specification for the CLOCK function is as follows:

function CLOCK
return CALENDAR.DAYDURATION;

The function CLOCK is defined in package TIMER.

An alternate approach to implementing this capability without package CALENDAR has been used
successfully in other benchmark applications. This method requires the use of assembly language or package
MACHINECODE to implement START, STOP, and READ functions for an available timer. Use of these
auxiliary functions takes advantage of knowing the maximum period of the timer and assumes that an interrupt
can be triggered each time the maximum period of the timer is reached. The START procedure essentially
zeroes the timer and associates an interrupt with the timer event. The clock begins to increment ordecrement
with the first call to START. When a timer interrupt occurs signalling that the maximum period of the timer
has been reached, control is transferred to an interrupt handler that simply increments a global variable by
one and returns control to the interrupted program. At the end of the event to be measured, the STOP function
is called and then a READ is issued to retrieve the instantaneous value of the timer. This value is then added
to the product of the maximum clock period and the value in the global variable. This calculation will provide
the number of clock ticks in the event just measured. Multiplying this value by the time for one clock cycle

13

NAC-ECPM-P1-IRS-0003 12 Januay 1991

gives the total event time. This approach is a bit more cumbersome, but is a reasonable alternative to package
CALENDA.R functions with poor resolution.

3.4.1.3. WAIT Procedure

The WAIT procedure implements an Ada delay statement, suspending the calling process for some specified
number of seconds. The Ada specification for procedure WAIT is as follows:

procadre WAIT

(SECONDS . in CALZNDAR.DAYDURATION

3.4.2. Data Requirements

The following data items are called out for the Timer Interface in the Software Requirements Specification
for the AATD CSCI:

IDENTIFIER DESCRIPTION SRC DEST DATA TYPE UNITS RANGE

CALENOAR.DAYDURATION Curremn tm. ECPM MC DAYDURATION Seconds 0.0- 86400.0

Table 2. AATD.IRS.TIM Data Elements.

3.5. Machine Dependent Types Package

The following paragraphs describe additional machine dependent considerations for porting the ECPM to
new backplanes and processor architectures.

Ada package MACHINEJDEPENDENTTYPES contains declarations for data types which are dependent
on the specific target processor to be evaluated. Refer to Appendix A for a sample definition of this package
for the MIL-STD- 1750A target.

3.5.1. WORDSIZE Constant

The constant WORDSIZE defines the number of bits in a word as defined for the target processor. For
example. WORDSIZE would be 16 for the MIL-STD- 1750A and 32 for processors like the Intel 80386,
MIPSCo R3000, and the Motorola 68020.

3.5.2. PACKEDINTEGERTYPE Type

The Ada type PACKED_INTEGERTYPE is an integer subtype that defines the length of data transferred
between the Master Computer and the target processor under test.

3.5.3. NORMALPRIORITY Constant

The constant NORMALPRIORITY defines the priority of the main AATD CSCI task and the priority of
the navigation benchmark itself. Recall from Section 3.3.1 that the Timer Task is the most urgent task

14

NAC-ECPM-P1-IRS-0003 12 January 1991

(NORMAL_PRIORITY+2) and the Additional Processing Task is the least urgent task (NORMALPRI-
ORrITY-1). The Additional I/O Task is assigned a priority of NORMALPRIORITY+ 1.

3.6. MACHINEDEPENDENTPROCEDURES Package

Two procedures are defined in Ada package MACHINE_DEPENDENTPROCEDURES that allow the
ECPM to obtain or release exclusive control of the target processor. Mutual exclusion is required in the
ECPM when calculating maximum reserve processing throughpuL The precise mechanism for gaining
mutual exclusion will vary from one testbed to the next. For the MIL-STD- 1750A implementation developed
in Phase One, mutual exclusion is achieved by locking the DP module's memory bus and disabling interrupts.
For other targets, instructions may be available to disable and enable interrupts explicitly.

3.6.1. RETAINEXCLUSIVECPUCONTROL Procedure

A call to this parameterless procedure ensures that the caller will maintain exclusive control of the Central
Processing Unit (CPU) until the RELEASEEXCLUSIVECPUCONTROL procedure is called.

3.6.2. RELEASEEXCLUSIVE CPUCONTROL Procedure

A call to this parameterless procedure allows the calling procedure to be pre-empted by other tasks.

3.7. NUMERIC_CONVERSIONPROCEDURES Package

The Phase One implementation of the ECPM uses packing and unpacking procedures to move data in and
out of the various message type fields. The packing is done to facilitate the transmission of 32-bit floating
point values to the Master Computer via the 1553B without loss of accuracy. In contrast, unpacking
procedures are used to convert packed integers received from the Master Computer to machine dependent
floating point values.

3.7.1. PACK Procedure

The PACK procedure is defined in Ada package NUMERICCONVERSIONPROCEDURES and has the
following specification:

procedure PACK
LOCAL_REAL : in float
PACKED VALUE out MACLHE_ TYPES .PACKED INTEGERTYPE
SCALING FACTOR : in float
OFFSET : in float

The variable LOCALREAL is the machine dependent floating-point value to be packed.

The variable PACKEDVALUE is the packed integer equivalent of the LOCALREAL input value. The
LOCALREAL value is packed using the scheme described in Reference [11 of Section 2.1.

The variable SCALINGFACTOR is the machine dependent floating-point value equivalent to the resolution
variable referred to in section B of Reference [I I in Section 2. 1. The scaling factor is used to pack a range
of floating point numbers into a 16-bit field.

15

NAC-ECPM-PI-IRS-0003 12 January 1991

The variable OFFSET is the machine dependent floating-point value used to shift a floating point input value
with a nonsymmetric value range into a symmetric value range. Refer to Reference [11 in Section 2.1 for
descriptions of the packing and unpacking algorithms.

3.7.2. UNPACK Procedure

The UNPACK procedure is defined in Ada package NUMERICCONVERSION_PROCEDURES and has
the following specification:

procedure UNPACK (
LOCAL REAL out float;
PACKED_VALUE : in MACHINETYPES.PACKED_INTEGER TYPE
SCALINGFACTOR in float
OFFSET in float ;

The variable LOCALREAL is the machine dependent floating-point number generated from the
PACKED_VALUE input parameter.

The variable PACKEDVALUE is the packed integer value to be converted to a machine dependent floating
point and returned via the LOCALREAL parameter. The LOCALREAL value is unpacked using the
scheme described in Reference (I I of Section 2.1.

The variable SCALINGFACTOR is the floating-point value equivalent to the resolution variable referred
to in section B of Reference [1] in Section 2.1. The scaling factor is used to pack and unpack a range of
floating point numbers to/from a 16-bit field.

The variable OFFSET is the floating-point value used to shift a floating point input value with a nonsymmetric
value range into a symmetric value range. Refer to Reference (I1 in Section 2.1 for descriptions of the packing
and unpacking algorithms.

3.7.3. PACKDOUBLE Procedure

The PACKDOUBLE procedure is defined in Ada package NUMERICCONVERSIONPROCEDURES
and has the following specification:

procedure PACK DOUBLE (
LOCALREAL in float ;
PACKEDVALUE_MS out MACHINETYPES.PACKEDINTEGERTYPE ;
PACKED VALUE_LS out MACHINE TYPES.PACKED_INTEGERTYPE ;
SCALING FACTOR in float
OFFSET : in float }

The variable LOCALREAL is the floating-point value to be packed.

The variable PACKEDVALUEMS will be the most significant 16-bits of the packed integer equivalent
of the LOCALREAL input value. The LOCALREAL value is packed using the scheme described in
Reference [1 I of Section 2. 1.

The variable PACKEDVALUELS will be the least significant 16-bits of the packed integer equivalent of
the LOCAL_REAL input value. The LOCALREAL value is packed using the scheme described in
Reference [1) of Section 2.1.

16

NAC-ECPMIPI-IRS-0003 12 January 1991

The variable SCALINGFACTOR is the floating-point value equivalent to the resolution variable referred
to in section B of Reference [I] in Section 2.1. The scaling factor is used to pack a range of floating point
numbers into a 16-bit field.

The variable OFFSET is the floating-point value used to shift a floating point input value with a nonsymmetric
valIue range into a symmetric value range. Refer to Reference [1] in Section 2.1 for descriptions of the packing
and unpacking algorithrns.

3.7.4. UNPACKDOUBLE Procedure

The UNPACK_DOUBLE procedure is defined in Ada package NUMERICCONVERSION_PROCE-
DURES and has the following specification:

procedure UNPACK DOUBL (
LOCAL REAL out float;
PACKEDVALUE_MS in MACBIN!_TYPES.PACKE•._ITEGER_TYPE ;

PACKED _VALUE LS in MACHINE TYPES.PACKED)INTEGERTYPE ;
SCALING FACTOR7 : in float
OFFSET in float

The variable LOCALREAL is the machine dependent floating-point value to be unpacked.

The variable PACKEDVALUEMS will be the most significant 16 bits of the packed integer equivalent of
the LOCALREAL output value. The LOCAL_REAL value is unpacked using the scheme described in
Reference [1] of Section 2.1.

The variable PACKEDVALUELS will be the least significant 16 bits of the packed integer equivalent of
the LOCALREAL output value. The LOCAL-REAL value is unpacked using the scheme described in
Reference [I] of Section 2. 1.

The variable SCALINGFACTOR is the machine dependent floating-point value equivalent to the resolution
variable referred to in section B of Reference [1] in Section 2.1. The scaling factor is used to pack a range
of floating point numbers into a 16-bit field.

The variable OFFSET is the machine dependent floating-point value used to shift a floating point input value
with a non.rsymmetric value range into a symmetric value range. Refer to Reference [I I in Section 2.1 for
descriptions of the packing and unpacking algorithms.

3.7.5. ROUNDTONEARESTINTEGER Function

During the creation of fields in certain message types, it is necessary for the ECPM to convert floating point
values to the packed integer format described in Reference [1] of Section 2.1. The Ada language does not
specify the precise manner in which this conversion must take place and different compilers will not handle
truncation and rounding uniformly. To provide consistent handling irrespective of compiler implementation,
the ECPM provides its own internal functions to perform rounding and truncation.

The ROUNDTONEARESTINTEGER function returns a packed integer that is the value of its floating
point argument (VALUE) rounded to the nearest whole number. If VALUE is exactly halfway between two
whole numbers, the result is the number with the greatest absolute magnitude. The Ada specification for
ROUND_TONEAREST_INT'EGER is as follows:

17

NAC-ECPM-PI-IRS-0003 12 January 1991

function ROUNDTONEAREST INTEGER
VALUE : in float) return
MACMINEDEPENDENT IYPES .PACKEDINTEGER TYPE

3.7.6. TRUNCATETO_0 Function

This function returns a packed integer that is the value of its floating point argument truncated toward zero.
The Ada specification for TRUNCATETO_0 is as follows:

function TRUNCATE_TO_0
VALUE : in float) return
MACHINE DEPENDENTTYPES .PACKED INTEGER TYPE

3.8. Compiler Pragma Considerations

Use of compiler pragmas for implementations of the ECPM should be avoided as much as possible. The
1750A implementation of the ECPM for TI's MDP uses the PACK and PRIORITY pragmas. The pragma
PACK is the only language-defined representation pragma.

Consistent with guidelines published in the Ada Language Reference Manual (LRM). pragma PRIORITY

is used in the ECPM only to indicate relative degrees of urgency and not for task synchronization.

3.9. Representation Specifications for Message Types

This paragraph describes the Ada representation specifications for the nine message types used by the ECPM.
These specifications must be tailored for each target processor to accommodate differences in addressing
modes (byte vs. word) and bit ordering (little endian vs. big endian). For example, the MIL-STD- 1750A
places bit 0 on the left (big endian) and the VAX places bit 0 on the right (little endian). The record
descriptions for the messages are shown here for demonstration purposes and correlate to the definitions in
Reference [1] of Section 2.1.

3.9.1. Message Type i

for MESSAGE_1_TYPE use
record

PSI at 0 range 0 .. 15;
THETA at 1 range 0 .. 15;
PRI at 2 range 0 .. 15;

end record;

3.9.2. Message Type 2

for MESSAGE_2_TYPE use
record

CONSTANT1 at 0 range 0 .. 15;
end record;

18

NAC-ECPM-PI-IRS-0003 12 January 1991

3.9.3. Message Type 3

for MESSAGE_3_TYPE use
record

CONSTANTI at 0 range 0 15;
CONSTANT2 at 1 range 0 15;
CONSTANT3 at 2 range 0 15;
PSI at 3 range 0 15;
NAVVELX at 4 range 0 15;
NAVVELY at 5 range 0 15;
NAV VEL_Z at 6 range 0 15;
PLAT1ORM X_ACCELERATION at 7 range 0 15;
PLATFORM_Y_ACCELERATION at 8 range 0 15;
VERTICAL ACCELERATION at 9 range 0 15;
RATE X at 10 range 0 15;
RATE_Y at 11 range 0 15;
RATEZ at 12 range 0 15;
NAV_BAROMZTRICRATE at 13 range 0 15;

end record;

3.9.4. Message Type 4

for MESSAGE_4_TYPE use
record

CONSTANT1 at 0 range 0 15;
CONSTANT2 at I range 0 15;
CONSTANT3 at 2 range 0 15;
PsI1 at 3 range 0 15;
PSI2 at 4 range 0 15;
THETA at 5 range 0 15;
PHI1 at 6 range 0 15;
PHI2 at 7 range 0 15;
NAVVEL Y at 8 range 0 15;
NAV VELCX at 9 range 0 15;
NAVVELZ at 10 range 0 15;
NAV ALTITUDEI at 11 range 0 15;
NAVALTITUDE 2 at 12 range 0 15;
NAV LATITUDE DEG at 13 range 0 15;
NAVLONGITZUDZDEG at 14 range 0 15;

CONSTANT4 at 15 range 0 15;
PLATFORM Y ACCELERATION at 16 range 0 15;
PLATFORM XACCELERATION at 17 range 0 15;
VERTICAL ACCELERATION at 18 range 0 15;
CONSTANT5 at 19 range 0 15;
CONSTANT6 at 20 range 0 15;
CONSTANT7 at 21 range 0 15;
CONSTANT8 at 22 range 0 15;
CONSTANT9 at 23 range 0 15;
RATEX at 24 range 0 15;
RATEY at 25 range 0 15;
RATE Z at 26 range 0 15;
CONSTANT10 at 27 range 0 15;

end record:

19

NAC-ECPM-PI-IRS-0003 12 January 1991

3.9.5. Message Type 5

for RAW DATA TYPE use
record

PLATFORM_X_ACCELEl XIONI at 0 range 0 15;

PLATFORM_X_ACCT 4ATIQON-2 at 1 range 0 15;

PLATFORM_Y_ACCELERATIONI at 2 range 0 15;
PLATFORMY_ACCELERATION_2 at 3 range 0 15;

VZRTIC=L ACCELERATION_1 at 4 range 0 15;
WRTICALACCELERATION_2 at 5 range 0 15;

Iz o_X 1 at 6 range 0 15;

RATE X_2 at 7 range 0 15;

RATE Y 1 at 8 range 0 15;

RATEY_2 at 9 rang& 0 15;
RATE_£z1 at 10 range 0 15;
RATEZ_2 at 11 range 0 15;
BAROMETRICALTITUDE_1 at 12 range 0 15;
BAROMETRICALTITUDE_2 at 13 range 0 15;

end record;

3.9.6. Message Type 6

for BENCHMARKRESULTSTYPE use
record

INPUT COMMAND at 0 range 0 .. 63;

STATUS at 4 range 0 .. 15;
ADDITIONALPROCESSINGTIME at 5 range 0 .. 31;
MAX 10 COUNT at 7 range 0 .. 15;

end record;

3.9.7. Message Type 7

for BENCHMARKCOKMANDTYPE use
record

ECPM CONTROL WORD at 0 range 0 .. 15;
TYPE_orCOMMAND at 1 range 0.. 15;
BENCHMARK DURATIONCOUNTER at 2 range 0 .. 15;

10 MIX ITERATIONSPERSECOND at 3 range 0 .. 15;

end record;

3.9.8. Message Type 10

for MESSAGE_10_TYPE use
record

CONSTANT1 at 0 range 0 .. 15;
CONSTANT2 at 1 range 0 .. 15;

CONSTANT3 at 2 range 0 .. 15;
CONSTANT4 at 3 range 0 .. 15;

end record;

20

NAC-ECPM-PI-IRS-0003 12 January 1991

3.9.9. Message Type 15

for MESSAGE_15_TYPE use
record

CONSTANT1 at 0 range 0 15;
CONSTANT2 at 1 range 0 15;
CONSTANT3 at 2 range 0 15;
CONSTANT4 at 3 range .0 15;
CONSTANT5 at 4 range 0 15;
CONSTANT6 at 5 range 0 15;
CONSTANT7 at 6 range 0 15;
CONSTANTS at 7 range 0 15;
CONSTANT9 at 8 range 0 15;
CONSTANT10 at 9 range 0 15;

end record;

21

NAC-ECPM-PI.IRS-0003 12 January 1991

4. Quality Assurance Provisions

NONE.

22

NAC-ECPM-Pl-IRS-0003 12 January 1991

5. Preparations for Delivery

NONE.

23

NAC-ECPM-PI-IRS-0003 12 January 1991

6. General Infornation

6.1. Notes

The following assumptions were made during development of the ECPM for the MIL-STD- 1750A and will
apply to future implementations of the program unless contrary guidance is received from NAC.

1. When the ECPM is measuring the maximum number of iterations of the I/O message
mix, all commands from the Master Computer will be ignored until the measurement is
completed. When running the ECPM, users should be aware that the time required to
process and ignore commands during a measurement event should invalidate that event
(i.e., additional overhead has been introduced).

2. When the ECPM is measuring the maximum spare processor reserve, all commands
from the Master Computer will be ignored until the calculation is completed.

3. When a stop command is received from the Master Computer while the ECPM is
executing in NAVONLY or RECORDINGRESULTS mode, the ECPM will continue
executing until the end of the current 50 millisecond period. At that time, a benchmark
results message will be returned to the Master Computer. If the ECPM was in RECORD-
INGRESULTS mode, the status word in the benchmark results message will indicate
that the results are invalid due to the receipt of a command while recording.

4. A prioritized, preemptive scheduler will be used.

5. Inputs to the navigation equations (i.e., data received via 1553B subaddresses 1, 2, 3, 4,
10, and 15) are not checked for accuracy in the ECPM.

6. If the ECPM is restarted, all navigation variables defined in the package NAVDATA
will be re-initialized.

7. If a second start command is received while the ECPM is executing, it will be ignored.
The program will continue executing until a timeout occurs or a stop command is
received.

6.2. MIL-STD-1750AConfIgurationinformation

1. There is no requirement for the ECPM code to run in a specific address state. However.
the Communications Services package, which is unique to TI's implementation, must
execute from address state 0 on the MIL-STD- 1750A.

2, The size of the ECPM object module, excluding the machine dependent code needed to
support TI's messaging scheme, is 9006 16-bit words, The default stack size and
pre-defined storage for access collections allocated by the Tartan compiler were suffi-
cient to run the benchmark. The Tartan runtime required 7724 words of storage. The
total memory required forall components including the ECPM, TI NOS, and Tartan Ada
runtime was 21167 words.

24

NAC-ECPM-PI-IRS-0003 12 January 1991

6.3. Additional I/O Task Details

Spare 1/0 is measured in terms of an additional 1/O mix. This mix consists of sending six identical Pi bus
chains where each chain consists of sending 10 type 16, single slave, block Pi bus messages which use label
addressing. For a particular experiment, all the block messages used in the additional 1/0 mix are either
extended headers or short headers. The label table entries (unique to Ti's NOS) in the Slave are configured
so as not to cause an interrupt on delivery of a message. The Slave ID field (bits 0 - 7 in HWA, where 0 is
LSB) is implementation dependent. The value of the data associated with a message is superfluous, but the
amount of data associated with a message (HWB) is important. The numberof 16-bit words of data associated
with each message is shown in Table 3. The value of the label field (HWCO) is implementation specific, and
for extended headers, the value of the extended header fields (HWD0-HWD6) is implementation dependent.
Pi bus control is vendor specific, but should allow for the Master to be interrupted on completion of a chain
being sent.

Pi BUS MESSAGE NUMBER OF WORDS
OF DATA

1 120

2 120

3 120

4 15

5 15

6 7

7 48

8 48

9 48

10 48

Table 3. Message Mix Used in Additional I/O Task.

6.4. Comment on 1750to 1553B I/O

For messages sent to the 1553B module, Pi bus block messages are to be used. Whether these messages use
short or extended headers, or whether label or direct addressed messages are used, is implementation
dependent. However, the structure of the data and size of the data to be transferred in the data phase of the
Pi bus message must be as defined in the ICD. The TI implementation uses type 16, single slave, extended
header block Pi bus messages and label addressing.

25

NAC-ECPM-PI-IRS-0003 12 January 1991

6.5. List of Acronyms

6-DOF 6 Degrees-of-Freedom

AATD Advanced Avionics Technology Demonstration

BIM Bus Interface Module

CCB Communications Control Block

CSCI Computer Software Configuration Item

CPU Central Processing Unit

DASL Digital Avionic Systems Laboratory

DID Data Item Description

DMA Direct Memory Access

DSEG Defense Systems and Electronics Group

ECPM Embedded Computer Performance Measurement

ICD Interface Control Document

IOBIDS Input/Output Built-In-Test Interface Description Specification

IRS Interface Requirements Specification

LRM Language Reference Manual (for Ada)

MC Master Computer

NAC Naval Avionics Center

NOS Network Operating System

SAx Subaddress x on MIL-STD-1553B (x = L..31)

STD Software Technology Department

SRS Software Requirements Specification

TI Texas Instruments Incorporated

VMEbus VersaModule Europe bus

26

NAC-ECPM-PI-IRS-0003 12 January 1991

Appendix A. Machine Dependent Types Package for MIL-STD-1750A

with SYSTEM;
package MACHINEDEPENDENTTYPES is

WORDSIZE : constant positive := 16;
-- Type of data transferred between the target
-- and master computer.
type PACKEDINTEGER TYPE is new integer range -32768 32767;
for PACKED INTEGER TYPE'size use 16;
-- This is the priority of the MAIN and NAV_EXEC tasks.
-- It is implementation-dependent.
NORMALPRIORITY : constant SYSTEM.PRIORITY : 11;

end MACHINE_DEPZNDENTTYPES;

A-1

NAC-ECPM-P1-IRS-0003 12 January 1991

Appendix B. 1/O Services Package for MIL-STD-1750A

-- TITLE: 1/0 Services Package

-- PURPOSE:

-- This package contains procedures which allow the transfer of data --

-- between the target and the master computer.

-- PROCESSING:
- - N/A

-- INPUTS:

- - None

-- OUTPUTS:
- - None

-- DEPENDENCIES:
- - SYSTEM

- - MESSAGETYPES

-- GLOBAL VARIABLES DECLARED:
- - None

-- GLOBAL VARIABLES ACCESSED:
- - None

-- EXCEPTIONS RAISED:
- - None

-- CALLED BY:
-- N/A

-- CALLS:
- - N/A

-- SIDE EFFECTS:
-- N/A

-- TARGET PROCESSOR:
- - implementation-dependent

-- DESIGN MATERIALS:
- - Software Requirements Specification for the Advanced Avionics --

-- Technology Demonstration (AATD) CSCI of the AATD System,
-- Advanced Avionics Technology Demonstration (AATD) Program Embedded --

-- Computer Performance Measurement (ECPM) MIL-STD-1553B Interface --

-- Definition

-- HISTORY:

-- Original - 8/30/90 Diane Paul

B-1

NAC-ECPM-PI-IRS-0003 12 January 1991

with SYSTEM;
with MESSAGETYPES;

package IOSERVICES is

-- Declare the subaddresses used by the benchmark.
type SUBADDRESSTYPE is (SAl, SA2, SA3, SA4, INPUTDATASA,

PERFDATASA, BENCH CMD SA, SAl0, SAI5);
for SUBADDRESSTYPE use (SAl = 1,

SA2 = 2,
SA3 = 3,
SA4 = 4,
INPUT DATA SA = 5,
PERF DATA SA = 6,
BENCHOlD_ SA - 7,

SA10 = 10,
SA15 = 15);

-- Declare the procedures used to comnunicate with the MC.
procedure INITIALIZE_1553_COMMUNICATION;

procedure INITIALIZE_NAV_10;

procedure WAIT FOR BENCHMARK COMMAND
BENCHMARK COMMANDACCESS out

MESSA GZ._TYPES.BENC. AE-_COMANDACCESSTYPE);

procedure GET.NAV DATA (
RAW_DATAACCESS : out MESSAGETYPES.RAW_DATAACCESSTYPE);

procedure WRITENAVDATA (RESULTSADDRESS in SYSTEM.address;
BYTE_COUNT in positive;
SUBADDRESS in SUBADDRESSTYPE);

procedure WRITEBENCHMARK RESULTS (
BENCHMARKRESULTSADDRESS in SYSTEM.addresa;
BYTECOUNT in positive);

end IOSERVICES;

B-2

NAC-ECPM-PI-IRS-0003 12 January 1991

-- TITLE: I/O Services Package

-- PURPOSE:
- - This package contains procedures which allow the transfer of data --

-- between the target and the master computer, as well as data structures --

-- used by the separate procedures.

-- PROCESSING:
-- N/A-

-- INPUTS:

-- None

-- OUTPUTS:

- - None

-- DEPENDENCIES:
- - SYSTEM
-- VHSIC_ 1750ADEPENDENTTYPES
-- P ZBUS INTERFACETYPES
- - COM TYPES
-- MESSAGLESERVI=-

-- MDP COMM PROCEDURES
-- NDPCOMMUICATIONS
-- MACHINEDEPENDENTTYPES

-- GLOBAL VARIABLES DECLARED:
- - None

-- GLOBAL VARIABLES ACCESSED:
- - None

-- EXCEPTIONS RAISED:
- - None

-- CALLED BY:
- - N/A

-- CALLS:

- - N/A

-- SIDE EFFECTS:
- - N/A

-- TARGET PROCESSOR:
- - implementation-dependent

-- DESIGN MATERIALS:
-- Software Requirements Specification for thu Advanced Avionics --

Technology Demonstration (AATD) CSCI of the AATD System, --

Advanced Avionics Technology Demonstration (AATD) Program Embedded --

Computer Performance Measurement (ECPM) MIL-STD-1553B Interface --

B-3

NAC-ECPM-P1 IRS-0003 12 January 1991

-- Definition

-- HISTORY:
-- original - 8/30/90 Diane Paul

with SYSTEM;
with VHSIC-1750ADEPENDENTTYPES;
with MACHINEDEPENDENTTYPES;
with PIBUSINTERFACETYPES;
with MDUPCOIO(UNICATIONS;
with HDPCOHN _PROCEDURES;
with CONTYPE-S;
with MES~SAGESERVICES;
with V1750 UTILITIES;
with UNCHECKEDCONVERSION;

package body 10_SERVICES is

package MACHINETYPES renams MACHINEDEPENDENTTYPES;
package V17_TYPES renames VHSXC-1750ADEPENDENTTYPES;
package PIBUSTYPES renames PIBUSINTERFACE TYPES;

function CONVERTINTEGERTOSYSTEMADDRESS is new
UNCHECKEDCONVERSION(

source = integer,
target - SYSTEM.address);

function CONVERTLOGICAL_-ADDRESSTOSYSTEMADDRESS is new
UNCHECKEDCONVERSIONi

source = V17_TYPES. LOGICAL_-ADDRESSTYPE,
target = SYSTEMK.address);

function CONVERTSYSTEMADDRESSTOLOGICALADDRESS is new
UNCHLECKEDCONVERSION (

source = SYSTEM.address,
target = V17_TYPES .LOGICALADDRESSTYPE);

function CONVERTSYSTEMADDRESSTOTASKBUFFERACCESS is new
UNCHECKEDCONVER.SION(

source - SYSTEM.address,
target -CONTYPES. TASKBUFFERACCESSTYPE);

function CONVERTSUBADDRESS_-TO_-SA is new UNCHECKEDCONVERSION(
source = SUBADDRESSTYPE,
target = HaW_COIO(UNICATIONS.SATYPE);

function CONVERTINTEGERTOLOGICAL ADDRESS is new
UNCHECKEDCONVERSION

source = integer,
target -V17_TYPES .LOGICALADDRESSTYPE);

function CONVERTBENCHMARK_-COMMAIID ACCESSTOLOGICALADDRESS is new
UNCHECKEDCONiVZRSION(

B-4

NAC-ECPM-P1 -IRS-0003 12 January 1991

source = MESSAGETYPES.BENCHMAPR_-COMMANDACCESSTYPE, @CODE A
target = V17_?YPZS.LOGICALJ.DDRESSTYPE); @CODE A -

function CONVERTLOGICAL ADDRESSTOBENCHM(ARKCOMMANDACCESS i3 new
UNCRCZDE-CONVERSION (

source - V17_TYPES .LOGICAL ADDRESSTYPE,
target = MESSiAGETYPES.BENiC-mARKCO~mumANACCESSTYPE);

function CONVERTSYSTEMADDRESSTOBENCHMARKCOMMANDACCESS is new
UNCHECKED-CONVERS ION(

source = SYSTEM.address,
target = MESSAGETYPES .BENCHMKARKCOMMANDACCESSTYPE);

function CONVERTADDRZSSTOMSGBUFFERACCESS is now
UNCHECKEDCONVERS ION(

source = SYSTEM.address,
target = COXTYPES .MSGBUFFERACCESS);

function CONVERTSYSTEMADDRESSTORAWDATAACCESS is new
UNCHECKEDCONiVERS ION

source = SYSTEM.addreSs,
target = MESSAGETYPES .RAWDATAACCESSTYPE);

function CONVERTMSGý_BVJFER_ ACCESSTORAWDATAACCESS is new
UNCHECKEDCONVERS ION(

source = COXTYPES .MSGBUFFERACCESS,

target = MESGETPE S R _ATAACCESSTYPE);

NUMBEROFBENCHMARKCOMMANDBUFFERS constant :- 2;

BENCHXARKCOMMANDBUFFERS *array (1 .. NUMBEROFBENCH1MARKCOMMANDBUFFERS)

of MESSAGE_-TYPES.BENCHMARKCOMMANDTYPE;
-- Set up the array containing pointers to the buffer* for the benchmark
-- command messages.

BENCHMARK_"COMMAND_-BUFFERPTRSACCESS :CONTYPES .TASKBUFFERACCESSTYPE
new CONTYPES TASKBUFFERTYPE'

(1 = CONVER-TSYST-EMADDRESS TOLOGICALADDRESS(
BENCHMARKCOMMANDBUFFERS (1) .ECPM CON-

TROLWORD' address),
2 - CONVERTSYSTEMADDRESSTOLOGICALADDRESS(

BENCHMARK COMMANDBUFFERS (2) ECPMCON-
TROLWORD'address),

others =CONVERT INTEGERTOLOGICALADDRESS (0));

-- Declare a local variable into which the message can be copied so that
-- the buffer can be released.

LOCAL_-BZNCJ04ARK COMMAND MESSAGETYPES .BENCHMARKCOMMAND TYPE;
LOCAL_ BENCHMARKOMDPTR MESSAGE_-TYPES .BENCHMARKCOMMAND_-ACCESS-TYPE

CONVERT SYS7TEM ADDRESSTOBENCHMARK COMMANDACCESS (
LOCALBENCHiMARKCOMAMAND.ECPM CON7TROL-WORD' address);

-- Declare the input buffer into which the raw (packed) nav data will

-- be placed.
INPUT_-BUFFER :MESSAGETYPES .RAWDATATYPE;

INPUTMSGBUFFERACCESS :CONTYPES *MSGBUFFERACCESS=
CONVERT ADDRESSTOMSG BUFFERACCESS(

8-5

NAC-ECPM-P1.IRS-0003 12 January 1991

INMUTBUFFERAPLATFORMXACCELERATION 1' address);

-- Declare the buffer into which the input data is copied.
RAWDATA :MESSAGE TYPAS.RAW DATA TYPE;
RAW DATA PTR :MESSAGE_'TYPES.RAWDATA AhCCESSTYPE=

CONVERT SYSTEM ADDRESSTORAwLrATA ACCESS(
RAW DATA. PL&TroRmXA jCCELRATxION_1' address);

-- Declare the table which Maps Bubaddresses to SIN labels to which
-messages destined for the MC are to be sent.

SA_-TOLABEL MAPPING_-TABLE :array (SUBADDRESS TYPE) of
NDPCODO(UICATIONWS. I .HSENDLABEL TYPE;-

NULLSYSTEM ADDRESS :SYSTEM.address :
CONvERTIn;TEGERTOSYSTEM_ ADDRESS (0);

procedure INITIALIZE_1553_COMMUNICATION is separate;
procedure INITIALIZENAV_10O is separate;

procedure WAITFORBZNCIO4ARRCOMMAND(
BENC104ARKCOMMAND ACCESS:

out b&SSAGE T7YPES.BZNCJIMARKCOMMAXDACCESSTYPE) is separate;

procedure GETNAVDATA(
RAWDATAAccE-SS: out mzSSAG.ETYPES .RAWDATAACCESSTYPE) is separate;

procedure WRITENAVDATA (RESULTSADDRESS in SYSTEM.address;
BYTECOUNT in positive;

SUBADDRESS -in SUEADDRESS TYPE) is separate:

procedure WRITEBENCIDIARKRESULTS(
BENCJ0MARXRESULTSADDRESS in SYSTEM.address;
BYTECOUNTi in positive) is separate;

end 10_ZZRVICES;

a-6

